
TOPICS IN DIGITAL SIGNAL PROCESSING

C. S. BURRUS and T. W. PARKS: DFTIFFT AND CONVOLUTION
ALGORITHMS
Rice University

T. W. PARKS and C. S. BUR RUS: DIGITAL FILTER DESIGN
Cornell University and Rice University

J. TREICHLER, R. JOHNSON, JR. and M . LARIMORE: THEORY AND
DESIGN OF ADAPTIVE FILTERS
Cornell University and Applied Signal Technology, Inc.

W. KOHN: DIGITAL CONTROL (in preparation)
Rice University

Digital Filter Design

T. W. Parks
School of Electrical Engineering
Cornell University
Ithaca, New York 14853

C. S. Burrus
Department of Electrical and Computer Engineering
Rice University
Houston, Texas 77251

A WILEY-INTERSCIENCE PUBLICATION

JOHN WlLEY & SONS, Inc.
New York Chichester Brisbane Toronto Singapore

Copyright 0 1987 by Texas Instruments Incorporated
Published by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
. beyond that permitted by Section 107 or 108 of the

1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data:

Parks, T. W.
Digital filter design.

"A Wiley-Interscience publication."
Includes bibliographies and index.
1. Electric filters, Digital-Design and

construction. L Burrus, C. S. 11. Title.
TK7872.F5P37 1987 621.3815'324 86-32500
ISBN 0-471 -82896-3

Printed in the United States of America

To our parents
William and Mildred Parks

and
Aleta Huffman

Preface

This digital filter design book is addressed to the mathematician, scientist, or
engineer who has an understanding of continuous-time signals and who has
been introduced to discrete-time signal analysis.

The main topic of this book is the frequency-domain analysis and design
of linear, constant coefficient, digital filters. The book is divided into two
major parts: finite-duration impulse-response (FIR) filters and infinite-duration
impulse-response (IIR) filters. Each part consists of a complete, self-contained
treatment of the corresponding filter type. All aspects of each filter type are
discussed. Each part begins with a discussion of filter properties, which leads
into material on design of the filter to meet frequency-domain specifications.
This aspect of filter design is called the approximation problem and makes up a
major portion of the book. Each of the two parts concludes with a chapter on
implementation of the filter with fixed-point arithmetic-the realization pro-
blem. The chapters on implementation both include a detailed design example
that presents a step-by-step design and implementation of a typical filter. The
design examples begin with the frequency-domain specifications for the filter
and conclude with a listing of the assembly language program for implementing
the filter on a signal-processing chip (the TMS32010 from Texas Instruments).
The book begins with an introductory chapter that reviews the concepts of
frequency-domain analysis of discrete-time systems and states the major
problems in digital filter design. The final chapter summarizes the main results
in the book with a discussion of the unique characteristics of the FIR and IIR
filter types. An appendix with listings of ten FORTRAN programs for filter
design is included.

This book may be used in several ways. For some applications one might

viii Preface

turn to the appendix, run the appropriate design program to get the coefficients
of a filter that meets given frequency-domain specifications, then turn to the
listing in the design example, insert the coefficients in the listing, and run the
program on a TMS32010. If all goes smoothly in this process, one may not need
to read and completely understand the theory in the book. However, if, as often
happens, the problem one is faced with is not exactly covered by the programs in
the appendix, then with some reading of the theory, one can probably modify
the appropriate design program or write a special program to obtain the
appropriate filter coefficients. Even if the coefficients can be obtained from a
program in the appendix, the implementation in the design example may not be
exactly what one wants. For example, the filter may take too much time to
execute or may require too much memory or may have undesirable quantization
effects. Again, some time spent in reading the theory in the chapters on
implementation should allow the reader to develop an appropriate implem-
entation of the desired digital filter.

This book would not have been written without the support and encourage-
ment of Texas Instruments, Inc. We would especially like to thank Mike Hames,
who has always been ready with a smile and a helping hand when all of us
realized just how much work is involved in writing a book. Maridene Lemmon
has continued to patiently correct and improve our writing styles and has
carefully read through countless revisions of the manuscript. The engineers at TI
have read early versions of the text and helped correct our errors.

We would like to thank Professor H. W. Schiissler who helped us begin to
understand the issues in digital filter implementation when he was on leave at
Rice University. Some of our examples are taken from his notes. We would like
also to thank Cole Erskine for working out the two detailed design examples
and for providing the necessary TMS32010 code. Jim Kaiser and Dick Roberts
provided us with very thorough reviews of the manuscript and made several
good suggestions, which we have incorporated in the text.

We appreciate the long hours of reading put in by our graduate students
Doug Jones and Henrik Sorenson, who have made many good suggestions for
improving the book. Thanks also is given to the students at Rice University in
our digital signal-processing courses who have helped us develop this book over
the years.

Contents

Part One
INTRODUCTION

1. Introduction to Digital Filters
1.1. Properties of Discrete-Time Systems
1.2. Linear, Stationary, Discrete-Time Systems
1.3. Frequency Response and Transfer Functions
1.4. Digital Filter Design

1.4.1 The Approximation Problem
1.4.2 The Realization Problem

1.5. Properties of FIR and IIR Filters
References

Part Two
FINITE IMPULSE-RESPONSE (FIR) FILTERS

2. Properties of Finite Impulse-Response Filters
2.1. Frequency-Domain Description of FIR Filters
2.2. Linear-Phase FIR Filters

2.2.1. Four Types of Linear-Phase FIR Filters
2.2.2. Calculation of FIR Filter Frequency Response
2.2.3. Zero Locations for Linear-Phase FIR Filters
References

X Contents

3. Design of Linear-Phase Finite Impulse-Response
3.1. Frequency-Sampling Design

3.1.1. Guidelines for Frequency-Sampling Design
3.2. Least Squared Error Frequency-Domain Design

3.2.1. Discrete Frequency Samples
3.2.2. Integral Squared Error Approximation Criterion
3.2.3. Transition Regions, Weighting Functions, and

Windows for FIR Filter Design
3.3. Chebyshev Approximation

3.3.1. Four Types of Linear Filters
3.3.2. Chebyshev Approximation for Linear-Phase

Design
3.3.3. The Remes Exchange Algorithm
3.3.4. Guidelines for Using the Parks-McGlellan

Algorithm
3.3.5. Design Formulas

3.4. Design of Maximally Flat (Butterworth) Filters
3.4.1. Derivation of the Maximally Flat Linear-Phase

Low-Pass Filter
3.4.2 Smooth Pass-Bands and Equiripple Stop Bands
References

4. Minimum-Phase and Complex Approximation
4.1. Optimum-Magnitude Chebyshev Design

4.1.1. Characterization of Optimum-Magnitude Filters
4.1.2. Design Procedures

4.2. Complex Approximation
4.2.1. Complex Chebyshev Error Approximation
4.2.2. Complex Approximation With Least Squared

Error
References

5. Implementation of Finite Impulse-Response Filters
5.1. Digital Signal Representations

5.1.1. Two's Complement Arithmetic
5.1.2. Fractions
5.1.3. Quantization Error

5.2. Equations, Structures, and Programs
5.3. Finite Word-Length Effects in

Filter Implementation
5.3.1. Coefficient Quantization
5.3.2. Scaling and Overflow
5.3.3. Quantization Noise

5.4. Design Example
References

Contents

Part Three
INFINITE IMPULSE-RESPONSE (IIR) FILTERS

6. Properties of Infinite Impulse-Response Filters
6.1. Frequency-Domain Formulation of IIR Filters
6.2. Calculation of IIR Filter Frequency Response
6.3. Locations of Poles and Zeros for IIR Filters

References

7. Design of Infinite Impulse-Response Filters
7.1. Rational Function Approximation
7.2. Classical Analog Low-Pass Filter Approximations

7.2.1. Butterworth Filter Properties
7.2.2. Butterworth Filter Design Procedures
7.2.3. Chebyshev Filter Properties
7.2.4. Chebyshev Filter Design Procedures
7.2.5. Inverse Chebyshev Filter Properties
7.2.6. Inverse Chebyshev Filter Design Procedures
7.2.7. Elliptic Function Filter Properties
7.2.8. Elliptic Function Filter Design Procedures
7.2.9. Optimality of the Four Classical Filter Designs
7.2.10. Frequency Transformations

7.3. Conversion of Analog-to-Digital Transfer Functions
7.3.1. The Impulse-Invariant Method
7.3.2. The Bilinear Transformation
7.3.3. Frequency Transformations

7.4. Direct Frequency-Domain IIR Filter Design Methods
7.4.1. Frequency-Sampling Design of IIR Filters
7.4.2. Discrete Least Squared Equation-Error IIR

Filter Design
7.4.3. Least Squared Error Frequency-Domain Design
7.4.4. The Chebyshev Error Criterion for IIR Filter

Design
7.5. Prony's Method for Time-Domain Design of IIR Filters
7.6. IIR Filter Design Programs

References

8. Implementation of Infinite Impulse-Response Filters
8.1. Recursive Structures

8.1.1. Coefficient Sensitivity
8.1.2. Second-Order Structures
8.1.3. Cascade Structures
8.1.4. Parallel Structures
8.1.5. State-Variable Filter Descriptions
8.1.6. Other Structures

xii Contents

8.2. Finite Word-Length Effects
8.2.1. Coefficient Quantization
8.2.2. Scaling and Overflow
8.2.3. Quantization Noise
8.2.4. Limit Cycles

8.3. Minimum-Noise Filter Realizations
8.4. Design Example

References

Part Four
SUMMARY

9. Summary

9.1. Comparison of Filtering Alternatives
9.1.1. FIR Digital Filters
9.1.2. IIR Digital Filters

9.2. Design Environment

Appendix
PROGRAMS

1. A FORTRAN Program for Linear-Phase Low-pass FIR Filter
Design Using Frequency Sampling

2. A FORTRAN Program for Linear Phase Low-pass FIR Filter
Design Using a Discrete Least Squared Error Criterion

3. A FORTRAN Program for Linear-Phase Low-pass FIR Filter
Design Using a Least Squared Error Criterion and a
Transition Region

4. A FORTRAN Program for Linear-Phase Low-pass FIR Filter
Design Using a Least Squared Error Criterion and
Optional Windows

5. A FORTRAN Program for Linear-Phase FIR Differentiator Design
Using a Least Squared Error Criterion

6. A FORTRAN Program for Linear-Phase FIR Design Using the
Chebyshev Error Criterion and the Parks-McClellan Algorithm

7. A FORTRAN Program for Arbitrary-Phase FIR Filter Design
Using a Complex Chebyshev Error Criterion

8. A FORTRAN Program for Arbitrary-Phase FIR Filter Design
Using a Complex Least Squared Error Criterion

9. A FORTRAN Program for IIR Filter Design Using Butterworth,
Chebyshev, and Elliptic Function Approximations

Contents xiii

10. A FORTRAN Program for IIR Filter Design Using a Least
Squared Equation-Error Criterion 327

11. TMS32010 Program for a length 21 FIR Filter 330
12. TMS32010 Program for a 4th Order Recursive Filter with

Cascaded Transpose Sections 330
13. TMS32010 Program for a 4th Order Recursive Filter with Cascaded

Direct Sections 3 30

Index

Examples

Example 3.1
Example 3.2
Example 3.3
Example 3.4

Example 3.5

Example 3.6
Examples 3.7
and 3.8
Example 3.9

Example 3.10
Example 3.11
Example 3.12
Example 3.13
Example 3.14
Example 3.1 5
Example 3.16
Example 3.17
Example 3.18
Example 4.1
Example 4.2
Example 4.3

Length-21 Low-Pass Filter by Frequency Sampling
Length-20 Low-Pass Filter by Frequency Sampling
Low-Pass Filter Designed by Discrete Least Squared Error
Low-pass Filter with a Transition Region Designed by Dis-
crete Least Squared Error
Low-Pass Filter with a Transition Band Designed by Discrete
Least Squared Error over the Pass Band and Stop Band
Length-21 Low-Pass Filter Designed by Least Squared Error
A Least Squared Error Design of Type 3 and Type 4 Differ-
entiators
Least Squared Error Design of a Low-Pass FIR Filter with
First-Order Spline Transition Function
Length-21 Low-Pass Filter with a Hanning Window
Length-21 Low-Pass Filters with Kaiser Windows
Length-101 Low-Pass Filter with a Kaiser Window
Remes Exchange
Length-21 Low-Pass Filter
Length-20 Low-Pass Filter
Low-Pass Filter with Echoes
A Length-2 1 Bandpass Filter
A Bandpass Filter With Transition Band Peak
A Length-2 Magnitude Characteristic
Bandpass, Reduced Delay Filter
Bandpass, Complex Approximation with Delay Weighting

Examples XV

Example 4.4
Example 4.5
Example 7.1
Example 7.2
Example 7.3
Example 7.4
Example 7.5
Example 7.6
Example 7.7
Example 7.8
Example 7.9

Equalization of a Fourth Order Elliptic Filter
Bandpass, Reduced Delay Filter, Least Squared Error
Design of a Butterworth Low-Pass IIR Filter
Design of a Chebyshev Low-Pass Filter
Design of an Inverse Chebyshev Low-Pass Filter
Design of a Third-Order Elliptic Function Low-Pass Filter
Design with the Bilinear Transformation
Design of a Chebyshev High-Pass Filter
Design of an Elliptic Function Bandpass Filter
Design of an Inverse Chebyshev Band-Rejection Filter
Design of Least Squared Equation-Error IIR Filter

Digital Filter Design

Part I

Introduction

Introduction to Digital Filters

Digital filters, at first, were simulations of analog filters on general-purpose
computers. As computer technology provided faster multipliers, more memory,
and good analog-to-digital converters, some of these computer simulations were
implemented in special hardware to replace the analog filter. These early digital
filters were large, expensive, and consumed considerable power. Nevertheless, in
applications where the flexibility and programmability of a digital filter could be
put to good use, and where cost, power consumption, and volume were not
major considerations, a digital approach to filtering was sometimes superior to
conventional analog filtering.

In the late 1960s and early 1970s, at a series of IEEE-sponsored Arden House
workshops, it seemed that there was always a talk comparing analog and digital
filters. Leaders in the field expressed the opinion that although digital filters cost
too much, were too large, and/or used too much power, they offered the
following advantages:

1. Programmable (filter characteristics easily changed)
2. Reliable and repeatable
3. Free from component drift
4. No tuning required
5. No precision components, no component matching
6. Superior performance (linear phase, for example)

These talks comparing analog and digital filters would inevitably end on an
optimistic note, predicting that in two years, at the next Arden House meeting,
digital technology would have advanced enough so that digital filters would be
the better choice for most applications in the audio-frequency range. These

4 Introduction to Digital Filters

predictions were made over a period of several years. While digital processing
was becoming faster and less expensive, analog filter technology was also
making advances.

In the 1980s, very large-scale integration (VLSI) developments have dramat-
ically reduced the cost and power consumption of digital filters and have led to
much more widespread application of digital signal processing. Digital filters are
even finding their way into the home in compact disk players and television sets.

This book has four major parts. Part I (this chapter) contains an introduction
and reviews the concepts of linear discrete-time systems, frequency response,
and filtering. Descriptions of the approximation and realization problems for
digital filters are also included along with a discussion of FIR (finite-duration
impulse-response) and IIR (infinite duration impulse-response) designs. Parts 11
and I11 form the main body of the book. Part 11, in Chapters 2 through 5, gives a
complete treatment of the properties of FIR filters, the approximation problem
for linear-phase, minimum-phase, and complex designs, and the implementation
of FIR filters with fixed-point arithmetic. Part 111, in Chapters 6 through 8,
treats properties, design, and implementation of IIR filters. Each part concludes
with a design example that gives a step-by-step design, beginning with the
specifications and concluding with an implementation on a Texas Instruments
TMS32010 signal-processing chip.

The design examples provide details of the design and implementation of
typical low-pass filters, including assembly language programs for the
TMS32010 digital signal processor. FORTRAN programs are supplied in the
appendix for designing both FIR and IIR filters. Part IV contains a concluding
chapter on the various merits of FIR and IIR designs and compares character-
istics of these two filter types.

1.1 PROPERTIES OF DISCRETE-TIME SYSTEMS

A discrete-time system takes an input sequence of numbers and produces an
output sequence of numbers. These number sequences are often samples of a
continuous function of time, where x(n) represents the signal x(t) at equally
spaced times t, = nT-hence the name discrete-time. To simplify the discussion,
we let T = 1, unless otherwise specified.

The box labeled S in Fig. 1.1 represents a discrete-time system with input x
and output y. When the input xl(n) gives the output yl(n), and x,(n) gives y,(n)
the system S in Fig. 1.1 is called linear if the linear combination of the inputs
a,x,(n) + a2x2(n) produces the output a,y,(n) + a,y,(n) for any choice of
constants a , and a,.

The system in Fig. 1.1 is called stationary or time invariant when

X , (n) I System S I - y , (n)

implies that

x , (n - m) - 1 System S I - y , (n - m)

1 . 2 Linear, Stationary, Discrete-Time Systems 5

1 System S I y

FIGURE 1.1 . A discrete-time system.

for any time shift m. The system S is stable if the output y(n) remains bounded for
any bounded input signal x(n). The discrete-time system S is called a digital
system if the input .u(n) and output y(n) can assume only a finite number of
possible values or if x(n) and y(n) are quantized.

1.2 LINEAR, STATIONARY, DISCRETE-TIME SYSTEMS

The analysis of a linear system consists of the following three steps:

1. Resolution of the input into simple components

2. Calculation of the system response to these simple components
3. Superposition of the responses

For time-domain analysis of a discrete-time system, the simple components are
shifted unit-sample functions 6(n - m), also called a digital impulse or unit-pulse
signal, where the unit-sample function 6(n) is equal to unity at n = 0 and is equal
to zero elsewhere, as shown in Fig. 1.2. The three steps in the analysis are as
follows:

1. The input is resolved into shifted unit-sample functions, 6(n), weighted by
the value of the signal where the unit-sample function is located, as indicated in
Fig. 1.3.

x(n) = x(m)b(n - m). (1 .1)
rn

FIGURE 1.2 . The unit-sample function

6 Introduction to Digital Filters

Signal

Shifted unit-sample functions

FIGURE 1.3. Resolution of a signal into unit-sample functions.

2. The response of the system to a unit pulse located at the origin is called the
unit-pulse response h(n). When the system is stationary, the response to a shifted
unit pulse 6(n - m) is simply the shifted unit-pulse response h(n - m).

3. Superposition is used to add the individual responses.

y(n) = C x(m)h(n - m).
m

(1.2)

In (1.2), h(n - m) is the system response to a unit-sample function located at time
m, and x(m) is the actual input value at time m. The summation of output
components in (1.2) is called discrete-time convolution or simply convolution.

A causal system has a unit-pulse response that is zero fur n < 0, and the
convolution in (1.2) becomes

or, with a change of variable,

OU

y(n) = C h(m)x(n - m).
m = O

The summations in (1.3) and (1.4) assume the unit-pulse response has infinite
duration; that is, the filter is an injinite-duration impulse-response (IIR) filter. If

1.3 Frequency Response and Transfer Functions 7

the unit-pulse response of a causal system is zero for all n > N - 1, the
convolution in (1.4) becomes

and the filter is called a finite-duration impulse-response (FIR) filter.

1.3 FREQUENCY RESPONSE AND TRANSFER FUNCTIONS

If the input to a causal, linear, stationary system is a complex exponential with
- frequency o,

Then by (1.4)

When the summation over m on the right side of (1.7) is written

then the response y(n) to an exponential input at frequency w is

Thus, H (o) describes the change in magnitude and phase at the frequency o-
hence the name frequency response.

If the input x(n) is a real-valued signal 2 cos(on) , it can be written as the sum
of two complex exponentials:

x(n) = i o n + - jwn

and the output is

y(n) = H(w)ejwn + H*(w)e-j"",

where H * (o) is the complex conjugate of H(w) .
Letting IH(o)l and 8 (0) be the magnitude and phase of H (o) , respectively, we

can write

8 Introduction to Digital Filters

FIGURE 1.4. Frequency response of a linear system.

As indicated in Fig. 1.4, the input cosine signal experiences an amplitude change
according to the magnitude JH(o)l of the frequency response and a phase shift
according to the phase O(o) of the frequency response. If the phase-shift term is
rewritten as

then the output signal y(n) experiences a delay of z,. Thus, z, is called the phase
delay1.' of the system.

The group delay of a system is defined to be1,'

For a bandpass signal the phase delay z, represents the delay of the carrier, and
the group delay z, represents the delay of the envelope of the signal.

In contrast to a continuous-time system, the frequency response of a discrete-
time system is always periodic with a period equal to the sampling frequency,
which in this case is normalized to one sample per second or 2n radians per
second. This is shown by

Another useful property of the frequency response of a system with a real-
valued unit-pulse response is

This relation means that the frequency response has an even magnitude function
and an odd phase function. Thus, for systems with real-valued unit-pulse
responses, frequency-response plots need only be drawn for positive frequencies.

The response shown in (1.7) assumes that the input signal was an exponential
with frequency o for all time n. If the input signal begins or ends at a defined
time, (1.7) does not apply. The response of the system is then the sum of a steady-
state component, determined from the frequency response, and a transient
component. This distinction becomes especially important for short-duration

1.4 Digital Filter Design 9

inputs. If, for example, an interfering tone is to be filtered out, a filter with a zero
response at the frequency of the tone is designed. If the tone starts and then stops
after a short time, the response of the filter will not be zero, as it would be if the
tone had been present for all time. Only the steady-state component of the
response will be zero. Transient, nonzero output components are produced
when the tone begins and ends.

We can generalize the idea of representing the behavior of a system in terms
of its frequency response by using the z If we use a complex
number z , written

- in the convolution sum of (1.4), instead of an exponential input, as in (1.6), the
output is

where

is the z-transform of the unit-pulse response h(n). The z transform of the unit-
pulse response is also called the transfer function of the system. For the
summation in (1.19) to converge, the magnitude of z must be large enough, or

If the region in the complex z plane, given by (1.20), where (1.19) converges
includes the unit circle (i.e., if R d I) , then the transfer function in (1.19), when
evaluated on the unit circle, is simply the frequency ;esponse of the system given
in (1.18).

The use of the same function H for both the transfer function and the frequency
response is quite common in the literature and should not cause confusion when
taken in context. It is easier to write H(o) rather than H(ej0) for the frequency
response.

1.4 DIGITAL FILTER DESIGN

The two parts to the filter design process are the approximation problem and
the realization problem. The approximation part of the problem deals with the
choice of parameters or coefficients in the filter's transfer function to approx-

10 Introduction to Digital Filters

imate an ideal or desired response. This approximation is often performed by
using the frequency response.

The realization part of the filter design problem deals with choosing a
structure to implement the transfer function. This structure may be in the form
of a circuit diagram if the filter is to be built of components, or it may be a
program to be used on a general-purpose computer or a signal-processing
microprocessor.

The approximation stage takes the specification and gives a transfer function
through four steps:

1. A desired or ideal response is chosen, usually in the frequency domain.
2. An allowed class of filters is chosen (e.g., length-N FIR filters).
3. A measure of the quality of the approximation is chosen (e.g., maximum

error in the frequency domain).
4. A method or algorithm is selected to find the best filter transfer function.

The realization stage then takes this transfer function and gives a circuit or
program through four steps:

1. An allowed set of structures is chosen.
2. A measure of the performance of the structure is chosen (e.g., the

minimization of quantization noise).
3. The best structure is chosen from the allowed set, and its parameters are

calculated from the transfer function.
4. The structure is implemented as a circuit or as a program.

These steps in filter design are not independent of each other; therefore, some
iteration is often required. However, to do the best job of filter design, one must
recognize and understand these distinct steps.

1.4.1 The Approximation Problem

R w l l from Section 1.3 that the transfer function is defined as the z transform of
the unit-pulse response of the The digital filters in this book are all
assumed to be causal and can all be characterized by a transfer function

The region of convergence for H(z) lies outside a circle centered at the origin of
the z plane. This circle passes through the pole with the largest radius. For stable
filters this radius is less than unity. If the transfer function of a filter can be
written as a polynomial (all ai = O), the filter has a finite-duration unit-pulse

1.4 Digital Filter Design 11

response and is called an FIR filter. If common factors are allowed in the
numerator and denominator of (1.22), the transfer function of an FIR filter can
be written as a rational function with some ai # 0. If, after cancellation of all
factors common to both the numerator and denominator, some of the ai
coefficients in the denominator are not equal to zero, then the filter has an
infinite-duration unit-pulse response and is called an IIR filter.

The approximation problem for an FIR filter is usually stated in the
frequency domain, equivalent to z = ej". The filter parameters to be chosen are
the unit-pulse response values bi in

. the Mth-order numerator polynomial of (1.22) being evaluated on the unit circle.
More conventional terminology refers not to the order of the FIR filter but to its
length. A length-N FIR filter has a frequency response

with N unit-pulse response values hi, i = 0, . . . , N - I.
In its most general form the approximation problem is a polynomial (for FIR

filters) or rational (for IIR filters) approximation problem with a complex
desired function on the frequency band from - .rr to .rr. (Recall that a digital filter
has a periodic frequency response with a period of 2z.) The parameters ai and bi
are chosen to minimize an appropriate metric of the distance between the
desired response D(z) and the actual response H(z), often the norm of the
difference,

The complex, nonlinear problem that results with IIR design has no
completely satisfactory solution to date. The much simpler complex, linear
problem for FIR filters can be solved by linear programming, as described in
Chapter 4. Usually the approximation problem is stated as a real approximation
problem where the squared magnitude of the frequency response, a real-valued
function, is chosen to meet a specification on the magnitude squared, and the
filter is forced to be a minimum-phase filter (see Chapter 4). For FIR filters with
exactly linear phase a real approximation problem also results.

Several possible choices are available for the norm function in (1.25). The
most widely used are the Chebyshev norm and the least square or 1, norm. The
Chebyshev norm is appropriate when specifications are stated in terms of
minimum allowed stop-band attenuation or maximum allowed pass-band error.
The least squared error measure is appropriate when specifications are in terms
of signal energy.

12 Introduction to Digital Filters

1.4.2 The Realization Problem

After the coefficients in the transfer function have been chosen, the problem is
only partially solved. The second part of the filter design is the realization
problem. Choices must be made concerning methods for implementing the filter.
The transfer function

corresponds to a difference equation relating the output y(n) and the input x(n).

y(n) = box(n) + b,x(n - 1) + . . . + b,x(n - M)

-a , y(n - 1) - a,y(n - 2) - ... - a,y(n - N). (1.27)

One implementation or realization of the filter is the direct calculation implied
by (1.27). As shown in Chapter 8, this direct method may not be satisfactory
when the coefficients are quantized. In fact, it is this quantization of coefficients
and signal values that makes the choice of filter realization important. Just as
there are different methods for evaluating a polynomial (e.g., Horner's rule),
there are many different ways to calculate the output y(n) in (1.27). These
different methods for calculating filter outputs may be conveniently represented
by block diagrams that illustrate alternative filter structures. For example, the
two diagrams in Figs. 1.5 and 1.6 represent the calculation of the same difference
equation describing the input/output relation for a second-order IIR filter.
However, these two structures have different properties when the coefficients
and signal values are quantized. The boxes with z-' represent delay elements,
and the coefficients ai and bi are represented as gains on the various branches of

FIGURE 1.5. Direct-form second-order block,

FIGURE 1.6. Transpose-form second-order block.

1.5 Properties of FIR and IIR Filters 13

the diagrams. Finite word-length effects, such as overflow, quantization noise,
and coefficient errors caused by quantized coefficients, demand an understand-
ing of the possible structures for implementing a digital filter.

The realization chosen for a specific filter is also based on the type of digital
hardware available for the implementation. With custom hardware, 6- or 7-bit
coefficients may be used to save hardware, and some registers may have 8 bits,
12 bits, and so on. Parallel computations may be the best implementation of the
filter. Input/output of the signal may be an important, time-consuming
operation, or the multiplications may take the longest time. In the case of a
programmable microprocessor, the instruction set plays an important role in
selecting a realization for a filter. For example, the TMS320 family has special
instructions to facilitate the multiply/accumulate operation in the direct

- realization of FIR filters.

1.5 PROPERTIES OF FIR AND IIR FILTERS

The two types of filters, FIR and IIR, are treated in separate parts of this book.
They have very different characteristics, yet they can often meet the same
specifications. The FIR filter has a transfer function that is a polynomial in zY1
and is an all-zero filter in the sense that the zeros in the z plane determine the
frequency-response magnitude characteristic. Although a length-N FIR filter
has a pole of order N - 1 at the origin of the z plane, a pole at the origin does
not affect the magnitude of the frequency response of the filter. An FIR filter can
have a unit-pulse response that is symmetric around the point (N - 1)/2 and can
therefore have exactly linear phase.

The IIR filter has both poles and zeros in the z-' plane and in the z plane.
The combination of a pole near the pass-band edge with a zero near the stop-
band edge can give an IIR filter a very short transition region between the pass-
band and the stop band. Generally, an IIR filter can give a sharper cutoff than an
FIR filter of the same order because both poles and zeros are present. However,
a causal IIR filter cannot achieve exactly linear phase but the FIR filter can. The
phase and group delay characteristics of conventional IIR filters are generally
not as good as those of FIR filters.

Which filter is better for a particular application depends on the hardware
used for the implementation of the filter. For example, the TMS320 family of
signal processors has special instructions to facilitate the implementation of an
FIR filter, a length-N FIR filter can be computed in about the same time as an
IIR filter of order N12.5 for the TMS32010 and N15.0 for the TMS32020.9 On
the other hand, the IIR filter requires less memory than an FIR filter that meets
about the same frequency-domain specifications. The IIR filter, when im-
plemented in fixed-point arithmetic, may have instabilities (limit cycles) and may
have large quantization noise, depending on the number of bits allocated to the
coefficients and the signal variables in the filter. The FIR filter, on the other

14 introduction to Digital Filters

hand, is usually implemented in a nonrecursive way, which guarantees a stable
filter.

For narrow-band, sharp cutoff filters where phase is not important, IIR filters
are likely to be superior to FIR filters. For applications where wave shape is
important, the FIR filter with its good phase characteristics is usually a good
choice.

REFERENCES

Considerable literature is available on the subject of analog and digital filter
design. Some books that give good descriptions of the theory of filter design are
listed in the references which follow.

A. V. Oppenhim and R. W. Schafer, Digital Signal Processing, Englewood Cliffs,
N.J.: Prentice-Hall, 1975.
L R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1975.
F. J. Taylor, Digital Filter Design Handbook, New York: Dekker, 1983.
R. A. Roberts and C. T. Mullis, Digital Signal Processing, Reading, MA: Addlson-
Wesley, 1987.
L. R. Rabiner and C. M. Rader, eds., Digital Signal Processing, selected reprints,
New York: IEEE Press, 1972.
Digital Signal Processing I I , selected reprints, New York: IEEE Press, 1979. Edited
by the Digital Signal Processing Committee.
B. Gold and C. M. Rader, Digital Processing ofsignals, New York: McGraw-Hill,
1969.
Programs jor Dlgital Signal Processing, New York: IEEE Press, 1979.
Digital Signal Processing Applications with the TMS320 Family, Texas Instruments,
1986.

Part II

Finite Impulse- Response
(FI R) Filters

Properties of Finite
Impulse-Response Filters

Digital filters with a finite-duration impulse-response (FIR) have characteristics
that make them useful in many application^.'^^ They can achieve exactly linear
phase and cannot be unstable. The design methods are generally linear. They
can be efficiently realized on general- or special-purpose hardware. This chapter
examines and evaluates important design characteristics of the four basic types
of linear-phase FIR filters.

Because of the method of implementation, the FIR filter is also called a
nonrecursive filter or a convolution filter. From the time-domain view of this
operation, the FIR filter is sometimes called a moving-average filter. All of these
names represent useful interpretations that are discussed in this chapter;
however, the name " F I R is the one most commonly seen in filter design
literature.

The duration or sequence length of the impulse response of these filters is, by
definition, finite; therefore, the output can be written as a finite convolution sum

y(n) = 1 h(m)x(n - m).
m = O

With a change of index variables, we can also write

where x(n) is the input and h(n) is the length-N impulse response.
The FIR filter may be interpreted as an extension of a moving sum or as a

weighted moving average. If one has a sequence of numbers, such as prices from
the daily stock market for a particular stock, and would like to remove the

18 Properties of Finite Impulse-Response Filters

erratic variations in order to discover longer trends, each number could be
replaced by the average of itself and the preceding three numbers; that is, the
variations within a four-day period would be "averaged out," and the longer-
term variations would remain. To illustrate how this happens, we consider an
artificial signal x(n) containing a linear term, K,n, and an undesired oscillating
term added to it, such that

If a length-2 averaging filter is used with

s n = 0, 1,
h(n) = J1

0, otherwise.

it can be verified that, after two outputs, the output is exactly the linear term
with a delay of one-half sample interval and no oscillation.

This example illustrates the basic FIR filter-design problem: determine N, the
number of terms for h(n), and the values of h(n) for achieving a desired effect on
the signal. Simple examples should be attempted to obtain an intuitive idea of
the FIR filter as a moving average; however, this approach will not suffice for
complicated problems where the concept of frequency becomes more valuable.

2.1 FREQUENCY-DOMAIN DESCRIPTION OF FIR FILTERS

The transfer function of an FIR filter is given by the z transform of h(n) as

The frequency response of a filter, as shown in Section 1.3, is found by setting
z = ei", which gives (2.4) the form

where o is frequency in radians per second. Strictly speaking, the exponent
should be -joTn, where T is the time interval between the integer steps of n (the
sampling interval). We assume that T =I , until later in the book where the
relation between n and time is important. To simplify notation, we let H(o)
rather than H(e'") represent the frequency response. It should always be clear
from the context whether H is a function of z or o .

This frequency-response function is complex valued and consists of a
magnitude and a phase. Even though the impulse response is a function of the
discrete variable n, the response is a function of the continuous-frequency

2.1 Frequency-Domain Description of FIR Filters 19

variable o and is periodic with period 2n. This periodicity is easily shown as
follows:

Frequency is denoted by w in radians per second or by f in hertz (cycles per
second). These quantities are related by

An example of a length-5 filter is h(n) = (2, 3, 4, 3, 2). Figure 2.1 shows the
frequency-response plot.

The discrete Fourier transform (DFT) can be used to evaluate the frequency
response at certain frequencies. The DFT3 of the length-N impulse response h(n]

W

FIGURE 2.1. Frequency response of the example k(n).

20 Properties of Finite Impulse-Response Filters

is defined as

When compared to (2.5), (2.7) gives

This states that the DFT of h(n) gives N samples of the frequency-response
function H(w). This sampling at N points may not give enough detail; therefore,
more samples are needed. Any number of equally spaced samples can be found
with the DFT by simply appending L - N zeros to h(n) and taking an L-length
DFT. This method is often useful when an accurate picture of all of H (o) is
required. Indeed, when the number of appended zeros goes to infinity, the DFT
becomes the Fourier transform of h(n).

Because the DFT of h(n) is a set of N samples of the frequency response FIR
filters can be designed so that the inverse DFT of N samples of a desired
frequency response gives the filter coefficients h(n). That approach is called
frequency sampling and is developed in Section 3.1.

2.2 LINEAR-PHASE FIR FILTERS

Particularly useful FIR filters are those with linear phase shift.'s2 To develop the
theory for this set of FIR filters, we need a definition of phase shift. If the real and
imaginary parts of H (o) are given by

the magnitude and phase are defined by

Thus

Mathematical problems arise, however, because M(w) is not analytic and d (o) is
not continuous. This problem is solved by introducing the real-valued

2.2 Linear-Phase FIR Filters 21

amplitude function A (o) that may be positive or negative. The frequency
response is written as

where A (o) is called the amplitude to distinguish it from the magnitude M (o) ,
and 8 (o) is the continuous version of d (o) . A (o) is a real, analytic function
related to the magnitude by

or IA(o)l = M (o) . With this definition, A (o) can be made analytic and 8 (o) can
be made continuous. These quantities are much easier to work with than M (w)
and d (o) . The relationships of A (o) and M (o) and of 8 (0) and d (o) are shown in
Fig. 2.2.

To develop the characteristics and properties of linear-phase filters, we

la) lb)

FIGURE 2.2. The magnitude and amplitude of an example linear-phase FIR filter. (a) magnitude
and phase. (b) amplitude and phase.

22 Properties of Finite Impulse-Response Filters

assume a general linear form for the phase function:

Equation (2.5) gives the frequency-response function of a length-N FIR filter as

and

Equation (2.14) can be written in the form

H(o) = A (~) ~ J (~ L + K 2 W)

if M (not necessarily an integer) is defined by

or, equivalently,

Equation (2.14) then becomes

We can put (2.17) in the form of (2.15), where A(to) is real. in two ways: K , = 0
or K , = 4 2 . The first case requires a special even symmetry in h(j7) of the form

which gives

2.2 Linear-Phase FIR Filters 23

where A(w) is a real-valued function of w and e-jM" gives the linear phase. When
N is odd,

M - 1

A(w) = 1 2h(n)cos(o(M - n)) + h(M). (2.1 9)
n = 0

With a change of variables, we get

When N is even,

N / 2 - 1

A(w) = 2h(n)cos(w(M - n)).
n = O

With a change of variables, we get

When K , = 4 2 in (2.15), an odd symmetry of the form

h(n) = -h(N - n - I),

is required. For N odd, H(w) then becomes

H(o) = jA(o)e-jM",

where

M - 1

A(w) = 1 2h(n)sin(w(M - n)),
n = O

For N even,

N / 2 - 1

A(w) = 1 2h(n)sin(w(M - n)). (2.24b)
n = O

2.2.1 Four Types of Linear-Phase FIR Filters

From the previous discussion, we see that there are four possible types of FIR
filters1 leading to the linear phase of (2.15). We will consider each type.

24 Properties of Finite Impulse-Response Filters

Type 1 . The impulse response has odd length and is even symmetric about its
midpoint n = M = (N - 1)/2, which requires h(n) = h(N - n - 1) and gives
(2.19) and (2.20).

Type 2. The impulse response has even length and is even symmetric about
M , but M is not an integer. Therefore, there is no h(n) at the point of symmetry,
but it satisfies (2.21) and (2.22).

Type 3. The impulse response has odd length and the odd symmetry of (2.23),
giving an imaginary multiplier for the linear-phase form in (2.24a).

Type 4. The impulse response has even length and the odd symmetry of type
3 in (2.23) and (2.24b).

Examples of the four types of linear-phase FIR filters with the symmetries for
odd and even lengths are shown in Fig. 2.3. Note that for N odd and
antisymmetry, h(M) = 0 .

To analyze or design linear-phase FIR filters, we need to know the
characteristics of A (o) . The most important characteristics are shown in Table
2.1.

Figure 2.4 shows examples of amplitude functions for odd- and even-length
linear-phase filters A(o) .

These characteristics reveal several inherent features that are extremely
important to filter design. For types 3 and 4 , A(0) = 0 for any choice of filter
coefficients h(n), which is undesirable for a low-pass filter. Types 2 and 3 always
have A(n) = 0 , which is undesirable for a high-pass filter. In addition to the
linear-phase characteristic representing a time shift, types 3 and 4 give a
constant 90" phase shift, desirable for a differentiator or a Hilbert transformer.

Type 1 Type 2

FIGURE 2.3. Example of impulse responses for the four types of linear-phase FIR filters.

2.2 Linear-Phase FIR Filters 25

TABLE 2.1. Characteristics of A(o) for Linear Phase

Type 1. Odd length, even symmetric h (n)
A (w) is even about w = 0
A (o) is even about o = 7c

A (o) is periodic wi th period 27c

Type 2. Even length. even symmetric h (n)
A (o) is even about o = 0
A (o) is odd about o = 7c

A (o) is periodic wi th period 47c

Type 3. Odd length, odd symmetric h (n)
A (w) is odd about w = 0
A (o) is odd about o = 7c

A (w) is periodic wi th period 27c

Type 4. Even length, odd symmetric h (n)
A (o) is odd about o = 0
A (w) is even about w = 7c

A (o) is periodic wi th period 47c

A (o) = - A (- w)
A(7c + W) = A(7c - 0)

A (o + 47c) = A (o)

FIGURE 2.4. Examples of amplitude functions for FIR filters.

26 Properties of Finite Impulse-Response Filters

The first step in designing a linear-phase FIR filter is choosing the type most
compatible with the specifications.

2.2.2 Calculation of FIR Filter Frequency Response

As shown in Section 2.1, L equally spaced samples of H (o) are easily calculated
for L > N by appending L - N zeros to h(n) for a length-L DFT. This appears as

H - = DFT{h(n)} for k = 0, 1, . . . , L - 1. r;k)
This method is a straightforward and flexible approach. Only the samples of
H (o) that are of interest need to be calculated. In fact, we can even achieve
nonuniform spacing of the frequency samples by altering the DFT defined in
(2.7). Direct use of the DFT can be inefficient, and for linear-phase filters, it is
A(w) , not H (o) , that is the most informative. In addition to direct application of
the DFT, special formulas are developed in (2.26)-(2.29) for evaluating samples
of A (o) that exploit the fact that h(n) is real and has certain symmetries. For long
filters even these formulas are too inefficient, so the DFT is used but
implemented by a fast Fourier transform (FFT) algorithm3.

The DFT is first used to give A (o) directly. If h(n) is shifted to be symmetric
about n = 0, the phase shift is zero; therefore H (w) = A (o) . The shift must. be
circular so that the resulting function will have a real DFT. Figure 2.5 shows the
signal in Fig. 2.3 shifted to give a real DFT.

Because the point of symmetry is not on an integer, it is impossible to shift an
even-length impulse response to give a real DFT. But we can circumvent this
limitation by stretching the even-length signal to twice its length by placing'a
zero between each original value. The point of symmetry of this double-length
signal then will be on an integer, and its DFT will be samples of two periods of
the A(a1) of the original signal. This stretching and shifting is explained in
reference 3 and illustrated in Fig. 2.6.

h(n) h(n) shifted for real DFT

h(n) with five zeros appended and shifted for real DFT
Q

FIGURE 2.5. Shifted impulse response for real DFT.

2.2 Linear-Phase FIR Filters 27

h(n) original h(n) stretched

h(n) stretched and shifted to have a real DFT

FIGURE 2.6. Modified even-length signal for a real DFT.

These DFT methods for calculating samples of A (o) are inefficient because
they do not take advantage of the symmetries and realness of h(n). We can derive
special formulas by building these characteristics into the DFT; see (2.19), (2.21),
and (2.24), which evaluate A (o) for any value of o.

In the special case of type 1 filters with L equally spaced sample points, the
samples of the frequency response have the form

For type 2 filters

For type 3 filters

For type 4 filters

In all cases the midpoint or point of symmetry is M = (N - 1)/2, which can be
viewed as an average time delay for the filter. For the even-length filter this delay
is not an integer multiple of the sample interval but gives a "half-sample delay".
Formulas (2.26)-(2.29) are efficient methods for calculating the frequency

28 Properties of Finite Impulse-Response Filters

response of an FIR filter with lengths up to a few hundred. The NZ calculations
required by this approach become too slow for longer lengths. A FORTRAN
subroutine that implements both (2.26) and (2.27) is given as part of the low-pass
filter programs in the appendix. A subroutine that implements (2.28) and (2.29) is
in the differentiator design program in the appendix. These programs can easily
be modified to drive a graphics terminal or plotter.

Although this section has primarily concentrated on linear-phase filters by
taking their symmetries into account, the method of taking the DFT of h(n) to
obtain samples of the frequency response of an FIR filter also holds for general
arbitrary phase filters.

2.2.3 Zero Locations for Linear-Phase FIR Filters

One can get a qualitative understanding of the filter characteristics by
examining the locations of the N - 1 zeros of an FIR filter's transfer function.
This transfer function is given by the z transform of the length-N impulse
response from (2.4).

This equation can be rewritten as

where D(z) is an (N - 1)th-order polynomial that is multiplied by an (N - 1)th-
order pole located at the origin of the complex z plane.

h(n) real implies that the zeros will be real or will occur in complex conjugate
pairs. If the FIR filter is linear phase, there are further restrictions on the
possible zero locations. From (2.18) we see that linear phase implies a symmetry
in the impulse response and, therefore, in the coefficients of the polynomial D(z)
in (2.31). Express the complex zero z, in polar form by

where r , is the radial distance of z, from the origin in the complex z plane, and x
is the angle from the real axis. See Fig. 2.7.

Using the definition of H(z) and D(z) in (2.30) and (2.31) and the linear-phase
even-symmetry requirement of

2.2 Linear-Phase FIR Filters 29

imaginary (2)

FIGURE 2.7. Location of the zero at 2 , in the complex plane.

give

Equation (2.33) implies that if zl is a zero of H(z), then l/zl is also a zero of H(z).
In other words,

if H(z,)=O, then H (2.34)

Equation (2.34) says that if a zero exists at a radius of r,, then one also exists at a
radius of llr,, thus giving a special type of symmetry of the zeros about the unit
circle. Another possibility is that the zero lies on the unit circle with
r l = l/rl = 1.

There are four essentially different cases1 of even-symmetric filters that have
the lowest possible order. All higher-order symmetric filters have transfer
functions that can be factored into products of these lowest-order transfer
functions. They are illustrated by four basic filters of lowest order that satisfy
these conditions: one length-2, two length-3, and one length-5.

The only length-2, even-symmetric, linear-phase FIR filter has the form

which, f& any constant K, has a single zero at zl = - 1.
The even-symmetric length-3 filter has a form

There are two possible cases. For la1 > 2 two real zeros can satisfy (2.34) with
zl = r and llr. Thus

30 Properties of Finite Impulse-Response Filters

For (a(< 2 the unit circle has two complex conjugate zeros, and

D(z) = (z 2 + (2 cos x)z + 1)K. (2.38)

The special case for a = 2 is not of lowest order because it can be factored into
the square of equation (2.35).

Any length4 even-symmetric filter can be factored into products of terms of
the form of (2.35) and (2.36).

The fourth case is an even-symmetric length-5 filter of the form

For a2 < 4(b - 2) and b > 2, the zeros are neither real nor on the unit circle;
therefore, they must have complex conjugates and must have images about the
unit circle. The form of the transfer function is

If one of the zeros of a length-5 filter is on the real axis or on the unit circle, D(z)
can be factored into a product of lower-order terms of the forms in (2.35), (2.37),
and (2.38); therefore, it is not of lowest order.

FIGURE 2.8. Zero locations for the basic linear-phase FIR filter transfer functions on the Z plane.

2.2 Linear-Phase FIR Filters 31

The odd-symmetric filters of (2.23) are described by the foregoing factors plus
the basic length-2 filter described by

The zero locations for the four basic cases of type 1 and type 2 FIR filters are
shown in Fig. 2.8. The locations for the type 3 and type 4 odd-symmetric cases of
(2.23) are the same, plus the zero at unity from (2.40).

We can conclude from this analysis that all linear-phase FIR filters have
zeros either on the unit circle or in the reciprocal symmetry of (2.37) or (2.39)
about the unit circle and that their transfer functions can always be factored into

- products of terms with these four basic forms. This factored form can be used in
implementing a filter by cascading short filters to realize a long filter. Knowing
the locations of the zeros of the transfer function helps in developing programs
for filter design and analysis.

SUMMARY

This chapter derived the basic characteristics of the FIR filter. For the linear-
phase case the frequency response can be calculated easily. The effects of the
linear phase can be separated so that the amplitude can be approximated as a
real-valued function. This property is very useful for filter design. It was shown
that there are four basic types of linear-phase FIR filters, each with character-
istics important for design. The frequency response can be calculated by
applying the DFT to the filter coefficients or, for greater resolution, to the N
filter coefficients with zeros added to increase the length. An efficient calculation
of the DFT uses the fast Fourier transform (FFT). The frequency response can
also be calculated by special formulas that include the effects of linear phase.

Because of the linear-phase requirements, the zeros of the transfer function
must lie on the unit circle in the z plane or they must occur in reciprocal pairs
around the unit circle. This fact gives insight into the effects of the zero locations
on the frequency response and can be used in the implementation of the filter.

The FIR filter is attractive from several viewpoints. It alone can achieve
exactly linear phase. It is easily designed with linear methods. It cannot be
unstable. The implementation or realization in hardware or on a computer is
basically the calculation of an inner product, which can be accomplished
efficiently. On the negative side, the FIR filter may require a rather long length
to achieve certain frequency responses. Hence, a large number of arithmetic
operations per output value and a large number of coefficients have to be stored.
The linear-phase characteristic makes the time delay of the filter equal to half its
length, which may be large.

How the FIR filter is implemented and whether it is chosen over alternatives
depend strongly on the hardware or computer to be used. If an array processor
is used, an FFT implementation3 would probably be selected. If the TMS320

32 Properties of Finite Impulse-Response Filters

signal processor is used, a direct calculation of the inner product is probably
best. If a VAX or similar general-purpose computer with floating-point
arithmetic is used, an IIR filter may be chosen over the FIR, or the im-
plementation of the FIR might take into account the symmetries of the filter
coefficients to reduce arithmetic. To make these choices, one must consider the
characteristics developed in this chapter together with the results developed
later in this book.

REFERENCES

[I] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1975.

[2] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Englewood Cliffs,
NJ: Prentice-Hall, 1975.

[3] C. S. Burrus and T. W. Parks, DFTIFFTand Convolution Algorithms, New York:
Wiley-Interscience, 1985.

Design of Linear-Phase
Finite Impulse-Response

In this chapter, various methods of linear-phase FIR filter design are developed
and The basic filter design problem involves the following steps:

1. Choose a desired ideal response, usually described in the frequency
domain.

2. Choose an allowed class of filters (e.g., a length-N FIR filter).
3. Establish a measure or criterion of "goodness" for the response of an

allowed filter compared to the desired response.
4. Develop a method to find the best member of the allowed class of linear-

phase FIR filters as measured by the criterion of goodness.

This approach is often used iteratively. After the best filter is designed and
evaluated, the desired response or the allowed class or the measure of quality
might be changed; the filter would then be redesigned and reevaluated.

The Ideal Low- Pass Frequency Response
This chapter develops design procedures by considering the basic low-pass filter.
The simplest ideal response has a pass band extending from o = 0 up to to = to,
and a stop band extending from o = o, up to the Nyquist frequency of o = 7c

(see Fig. 3.1~). In some cases there is a region between the pass band and the stop
band where neither the desired nor the undesired signals exist. Or the region
may be the overlap of the spectra of the desired and undesired signals. This
region can be defined as a transition region, with the ideal response having a
transition function that more smoothly connects the pass-band and stop-band
responses and allows a better total approximation (see Fig. 3.lb). The third
possibility (Fig. 3 .1~) does not define the approximation over the transition

34 Design of Linear-Phase Finite Impulse-Response

I W

I
T Tr

Pass band Stop band

(a)

A , (w)

Transition function H , (w)

W

7T
Pass band Stop band

Transition region

(b)

0 I
1

1 W

0 "'1
Pass band Stop band

~rans i t ibn band

FIGURE 3.1. Ideal low-pass FIR filter frequency responses.

region, and it is called a transition band. All three cases are considered by the
different design criteria and methods.

The Approximation Criteria
Three error measures are generally used in FIR filter design. One is the average
of the squared error in the frequency-response approximation. The second is the
maximum of the error over specified regions of the frequency response. A third
approach is based on a Taylor series approximation to the desired response. The
method based on the first error measure is called a least squared (LS)
approximation, the second a Chebyshev approximation, and the third a

3.1 Frequency-Sampling Design 35

Butterworth or maximally flat approximation. Most of the useful design
procedures are based on one of these three approximations, or on a combination
of them, or on a modification of them.

The Design Methods
Each of the various methods for FIR filter design discussed in this chapter has
some advantages and some disadvantages. The frequency-sampling method is
fast and simple. It is useful for adaptive filters or for an intermediate stage in a
more complicated algorithm where speed is important. Unfortunately, it gives
the least control over the total frequency response.

The LS error methods use an error criterion that is related to the energy of
the signal or noise, and the design equations are linear. However, the designs
sometimes have frequency responses with oscillations or overshoots that may be
undesirable. The use of windows is a simple method of controlling these effects,
but it is rather ad hoc and the results are not optimal according to any known
criterion. Use of a transition region or weights gives excellent results, but the
problem may not have an analytical solution, or it may require the solution of
ill-conditioned equations.

The Parks-McClellan algorithm minimizes the Chebyshev error, but the
design algorithm can be slow. If smoothness of the response is needed, the
maximally flat approximation has an analytical solution for the basic low-pass
filter. A newly developed method based on Zolotarev polynomials gives a
mixture of maximally flat and Chebyshev approximations. This chapter con-
siders each of these methods and their characteristics.

3.1 FREQUENCY-SAMPLING DESIGN

The most straightforward design method is simply the inverse of the analysis
procedure of (2.7) given in Section 2.1. The analysis calculates samples of the
frequency response from the filter coefficients. This problem is well posed if N
samples of a desired frequency response are used to find the N filter coefficients
by simply solving the N simultaneous equations given by (2.8). This approach
can also be viewed as an interpolation problem where the designed filter will
have a frequency response that exactly passes through the desired points and,
between those points, takes on values given by (2.5).

Directly solving the N equations of (2.8) is generally undesirable. Solving N
simultaneous equations requires on the order of N3 arithmetic operations, and
the equations are sometimes ill conditioned. If the frequency samples are equally
spaced, the DFT can be used. Since the DFT of the impulse response gives
samples of the frequency response, the inverse DFT (IDFT) of samples of a
desired frequency response will give the impulse response. This requires N2
arithmetic operations in general, but only N log N operations if the FFT can be
used.13

Since h(n) is real and, for the linear-phase problem, symmetric, the required

36 Design of Linear-Phase Finite Impulse-Response

arithmetic is reduced by a factor of 4 compared to the direct DFT approach, and
simple design formulas that have good numerical properties can be derived.

To develop explicit formulas for frequency-sampling design of linear-phase
FIR filters, a direct use of the inverse DFT is most straightforward. For N
equally spaced frequency-response samples of C, = H(2nk/N), the length-N FIR
filter coefficients are given by the IDFT as

When H(w) is linear phase, (3.1) may be simplified by the formulas in Chapter 2
for the four types of linear-phase FIR filters. For example, the frequency
response (2.26) for the type 1 filter for N is odd, L = N , and M = (N - 1)/2, and
a frequency sample at w = 0 is

Using the amplitude function A(w), defined in (2.10), of the form (3.2) and the
IDFT (3.1) give for the impulse response

Because h(n) is real, A, = A , -, and (3.3) becomes

Only M of the h(n) need be calculated because of the symmetries in (2.18).
This formula calculates the impulse response values h(n) from the desired

frequency samples A, and requires M 2 operations rather than N2. An interesting
observation is that not only are (3.2) and (3.4) a pair of analysis and design
formulas, but they are also a transform pair. Indeed, they are of the same form as
a cosine transform.14

A similar development applied to the cases for even N from (2.27) gives the
frequency samples

3.1 Frequency-Sampling Design 37

The design formula becomes

which is of the same form as (3.4), except that the upper limit on the summation
recognizes N as even and (from Section 2.2.1) AN,, = 0.

The scheme just described uses frequency samples at

-which are N equally spaced samples starting at o = 0. Another possible
frequency-sampling scheme that allows design formulas has no sample at o = 0
but uses N equally spaced samples located at

This form of frequency sampling is more difficult to relate to the DFT than the
sampling of (3 3 , but it can be done by stretching1' A, and taking a 2N-length
DFT.

The two cases for odd and even lengths and the two for samples at zero but
not at zero frequency give a total of four cases for the frequency-sampling design
method applied to linear-phase FIR filters of types 1 and 2, as defined in Section
2.2.1. For an odd length and no zero sample, we derive the analysis and design
formulas analogously to (3.2) and (3.4):

The design formula becomes

2n(n - M)(k + f) + A , cos n(n - M) . (3.10)
N I

The fourth case, for an even length and no zero frequency sample, gives the
analysis formula

and the design formula

38 Design of Linear-Phase Finite Impulse-Response

Formulas (3.4), (3.6), (3.10), and (3.12) allow a straightforward design of the four
frequency-sampling cases. They and their analysis companions in (3.1), (3.5),
(3.9), and (3.1 1) also are the four forms of discrete cosine and inverse cosine
transforms. A FORTRAN program that implements these four designs is given
as Program 1 in the appendix.

The designs of even-symmetric linear-phase FIR filters of types 1 and 2 in
Section 2.2.1 have been developed here. A similar development for the odd-
symmetric filters, types 3 and 4, can easily be performed, with the results closely
related to the discrete sine transform. Using the frequency sampling scheme of
(3.7), we obtain the type 3 analysis and design results:

For type 4

If we use the frequency-sampling scheme of (3.8), the type 3 equations become

For type 4

These type 3 and type 4 formulas are useful in the design of differentiators and
Hilbert transformer^'*^^^^^^ directly and as the base of the discrete LS error
methods in Section 3.2.1.

3.1 Frequency-Sampling Design 39

3.1.1 Guidelines for Frequency-Sampling Design

Guidelines are necessary for choosing among the four cases for frequency-
sampling design. Some examples may aid in making the choice. One example is
a low-pass filter with a pass band extending through half of the range to the
Nyquist frequency or folding frequency (one half of the sampling frequency).
With normalized notation, the sampling frequency is w = 2n rad/s or f = 1 Hz
(one cycle per second). As shown in Table 2.1, the frequency response is periodic
with period 2n if N is odd and period 4n if N is even. Therefore, the maximum
frequency or Nyquist frequency is w = n or f = 0.5 Hz.

A linear-phase FIR filter is designed to approximate the ideal low-pass
response that has a pass band from w = 0 to n/2 and a stop band from w = 4 2

'to n. The ideal amplitude frequency-response plot is shown in Fig. 3 .1~ .
Experience shows that the total frequency response of the designed filter

becomes closer to the ideal as the length becomes longer. However, the measure
of closeness must be carefully defined. For now, we assume that an approximate
length has been chosen. The choice of whether the length is odd or even is made
by matching the intrinsic properties of the response of an even or odd length, as
shown in Table 2.1 and Fig. 2.3, to the desired response. Finally, the choice of a
frequency sample at zero frequency or not is made. This choice is made to make
the transition between pass band and stop band fall as near as possible to
halfway between two sample points. The design can then be calculated by one of
the formulas in (3.4), (3.6), (3.10), or (3.12).

If frequency-sampling design with an ideal desired frequency response having
a discontinuity causes too much oscillation or overshoot between the samples, a
transition,region can be added to the ideal response. That is discussed in Section
3.2.3.1. The shape of the transition function can have an important influence on
the design.

Example 3.1. Length-21 Low-pass Filter by Frequency Sampling
This example concerns the design of an odd length-21, linear-phase, low-pass

filter where the desired frequency response has a pass band that is half of the
maximum frequency, as illustrated in Fig. 3 .1~ . Thus, the band edge is
f, = 0.25 Hz for a sampling frequency of one sample per second. The odd-length
formula (3.4) for a sample at zero frequency is used to design the filter (see
Program 1 in the appendix). The resulting filter coefficients are

40 Design of Linear-Phase Finite Impulse-Response

The frequency response is shown in Fig. 3.2a and 3.2b. Note the ripples in the
pass band and the stop band near the band edge and the exact interpolation of
the sample points in the pass band and the stop band. The maximum stop-band
attenuation is approximately 16 db. The locations of the zeros of the transfer
function are shown in Fig. 3.2~. A total of 20 zeros for the twentieth-degree
polynomial is formed from the 21 filter coefficients in (2.4). There are 10 zeros on
the unit circle that come from the samples in the stop band and have the form of
(2.38), as shown in Fig. 2.8~. There are 10 zeros with 8 occuring in two sets of
four, as given in (2.39) and shown in Fig. 2.8d and two on the real axis, as in Fig.
2.8b and given in (2.37).

Example 3.2. Length-20 Low-pass Filter by Frequency Sampling
This example uses the same specifications as Example 3.1 with a band edge of

f, = 0.25 Hz, but uses an even-length design of N = 20 from (3.5). The filter

FIGURE 3.2. Length-21 low-pass FIR filter by frequency sampling.

3.1 Frequency-Sampling Design 41

I I I

I

[mag (2) 0 z plane

I

fc/

FIGURE 3.2. (Continued)

coefficients from (3.6) and Program 1 in the appendix are

42 Design of Linear-Phase Finite Impulse-Response

The frequency response is given in Fig. 3.3a and 3.3b, and the transfer function
zeros are shown in Fig. 3 .3~ . Note the zero at w = n that all even-length filters
have, in contrast to the case for N = 21. This results in a single zero on the unit
circle on the real axis since there is now a total of nine zeros on the unit circle.
The pass-band and stop-band performances of this example are very close to
those in Example 3.1, but the location of the band edge is slightly higher.

Extensions
A possible generalization with the frequency-sampling design is the specification
of the desired frequency-response samples over a nonuniform spacing of
frequencies. The IDFT cannot be used, and specific design formulas cannot be
derived for this case, but the design problem can be posed by taking N samples
of the frequency responses given in (2.19), (2.21), or (2.24) at arbitrary frequencies

FIGURE 3.3. Length-20 low-pass FIR filter by frequency sampling

3.1 Frequency-Sampling Design 43

lmag (2)
0

z plane

fcl

FIGURE 3.3. (Continued)

to give N simultaneous equations that can be solved for h(n). More generally, for
arbitrary-phase response, (2.5) can be sampled at N frequencies. Again, care
must be used to avoid large errors between sample frequencies.

The frequency-sampling design method can be used directly to design FIR
filters; however, it may also be used as a starting point or intermediate stage in a
more complicated method. It is also used to design the high-order prototype
filters that are truncated in the LS error method of Section 3.2.1.

Section 3.2.2.1 shows that by allowing a transition region as in Fig. 3.lb, it is
possible to reduce the overshoot or ripple in the pass band and stop band for a
given order. It is also possible to further reduce the ripple by allowing several

44 Design of Linear-Phase Finite Impulse-Response

sample points in the transition region and adjusting their value to minimize an
error criterion.' This was a popular approach to FIR filter design before the
Remes exchange algorithm was developed for the direct design of optimal
Chebyshev filters.

Summary

This section developed the FIR filter frequency-sampling design method
specifically for the linear-phase filter. Direct design with the frequency-sampling
method is possible by applying the inverse DFT to equally spaced samples of the
frequency response H(w). This direct use of the IDFT can design arbitrary-phase
as well as linear-phase FIR filters. If it is used to design linear-phase filters, the
desired H(w) must satisfy the constraints given in Section 2.2 and the linear
phase must be consistent with the filter length. Great care must be exercised in
designing both linear- and nonlinear-phase filters by the direct method. If the
desired phase response is in some way inconsistent with the magnitude or the
filter length, large errors will occur between the sample points. However, when
used with care and when checked by analysis, it is a very simple and powerful
design tool.

For the linear-phase FIR filter, simple design formulas were developed that
automatically take care of the phase. These formulas are easy to use and can be
implemented on small computers or calculators to design very long filters. The
design formulas or the IDFT give very little numerical error. Using the FFT to
calculate the IDFT gives a fast design procedure with even less numerical error.

3.2 LEAST SQUARED ERROR FREQUENCY-DOMAIN DESIGN

The purpose of most filters is to separate desired signals from undesired signals
or noise. Often the descriptions of the signals and noise are given in terms of
their frequency content or the energy of the signals in frequency bands. For this
reason, filter specifications are generally given in the frequency domain, and,
since the energy of a signal is related to the square of the signal, a squared error
approximation criterion is often appropriate. This section considers two
methods of defining a squared error. The first definition is the sum of the squares
of the error measured at a finite set of frequency sample points. The second is the
integral of the square of the error over a finite or infinite range of frequencies.

3.2.1 Discrete Frequency Samples

The frequency-sampling design method is really not an approximation
approach but an interpolation method that produces a filter with a frequency
response that exactly passes through the sample points. However, there is no
constraint on the response between the sample points, and poor results may be
obtained. In this section we control the response between sample points by

3.2 Least Squared Error Frequency-Domain Design 45

considering a number of sample points larger than the order of the filter.
Because this results in more equations than unknowns, only approximate
solutions are possible.

The frequency response of an FIR filter presented in (2.5) is given by

The design problem is posed by defining an error measure E as a sum of the
squared differences between the actual and the desired frequency response over a
set of L frequency samples. This error function is defined as

where Hd(wk) are the L samples of the desired response. This problem is easier to
formulate and solve if the frequency samples are equally spaced, which gives

and the problem is restricted to linear-phase filters, where the real-valued
amplitude A(w), rather than the complex frequency response H(w), can be
approximated. For approximations to a complex response, see Chapter 4.

With these conditions (3.14) becomes

or, with a simpler notation,

A powerful property of the Fourier transform permits a straightforward
design of LS error FIR filters. Parseval's t h e ~ r e m , ' ~ - ' ~ based on the orthogon-
ality of the DFT, states that the error defined by'(3.15) in the frequency domain
can also be calculated in the time domain for L odd by

where hdn is the length-L FIR filter that has the L frequency-response amplitude
samples A,,. We can calculate this filter by the frequency-sampling method of

46 Design of Linear-Phase Finite Impulse-Response

Section 3.1, using the special formulas such as (3.4) for length L or the IDFT. A
factor of 1/L is omitted from these equations to simplify the development. The
filter to be designed has a length-N impulse response hn with L frequency-
response samples A,. Because the filter is of length-N, the error equation can be
split into two sums:

This equation clearly shows that to minimize E, we need to choose the N values
of hn to be equal to the equivalent N values of h,,. In other words, we obtain hn
by simply truncating h,,. The second summation then gives the residual error.
Examining the residual error as a function of N may help to choose the filter
length N.

For the type 1 linear-phase FIR filter (described in Section 2.2) with odd
length N and even-symmetric impulse response, the L equally spaced samples of
the frequency response from (2.19) give (2.26) and (3.1). The samples are

where M = (N - 1)/2. This formula was derived as a special case of the DFT
applied to the type 1, real, even-symmetric FIR filter coefficients to calculate the
san?pled amplitude of the frequency response. We noted in Section 3.1 that it is
also a cosine transform, and it can be shown that this transformation is
orthogonal over the independent values of A,, just as the DFT is.

To use the alternative equally spaced sampling in (3.8), which has no sample
at zero frequency, we must calculate hdn from (3.10). The type 2 filters with even
N are developed in a similar way and use the design formulas (3.6) and (3.12).
These methods are summarized as follows:

The filter design procedure for an odd-length filter is to first design an odd-length-L
FIR filter by the frequency-sampling method from (3.4) or (3.10) or the IDFT, then to
symmetrically truncate it to the desired odd-length N. To design an even-length filter,
start with an even-length-L frequency-sampling design from (3.6) or (3.12) or the
IDFT and symmetrically truncate. The resulting length-N FIR filters are an optimal
LS error approximation to the desired frequency response over the L samples.

This approach can also be applied to the general arbitrary-phase FIR filter
design problem discussed in Chapter 4.

It is sometimes desirable to formulate the mean-error design problem using
unequally spaced frequency samples and/or a weighting function on the error.
This formulation requires a different approach to the solution.

3.2 Least Squared Error Frequency-Domain Design 47

Equation (2.19) relates the L frequency samples to the M + 1 independent
values of the symmetric length-N impulse response h(n). The design problem
that gives the A, and the values for h(n) represents L equations with M + 1
unknowns. Because of the symmetries of A(w) shown in Fig. 2.3, only half of the
L values of A, are independent; however, to have proper weights on all L
samples, we must calculate all values.

Equation (2.19) sampled at L arbitrary frequencies can be written as a matrix
equation

where h is an M + 1 length vector with elements that are the first half of h(n). F is
an L-by-(M + 1) matrix of the cosine terms from (2.19), and a is a length-L
vector of the frequency samples A,. If the formula for the calculation of L values
of the frequency response of a length-N FIR filter in (2.19) is used to define an
error vector of differences, as defined in (3.15), and the result is written in the
matrix formulation of (3.16), the error becomes

where e is a vector of differences between the actual and desired samples of the
frequency response. The error measure defined in (3.1 5) becomes the quadratic
form

For L > N, equation (3.16) is overdetermined and cannot, in general, be solved
for h. The filter design error measure is the norm of e , as given in (3.18). This
error measure is minimized by making e orthogonal to the columns of F in
(3.17). Multiplying both sides of (3.17) by the transpose of F gives

For E to be minimum, e must be orthogonal to the columns of F and, therefore,
FTe must be zero. The optimal h must satisfy the "normal equation^"^

Equation (3.19) can be rewritten in terms of the p seudo in~e r se~ .~ as

48 Design of Linear-Phase Finite Impulse-Response

If L = N, (3.20) becomes the regular frequency-sampling problem and can be
solved with zero error. For the case of interest in this section, where L > N, there
are still only M + 1 equations to be solved. For L >> N, equation (3.19) may be
ill conditioned, and (3.20) should not be used to solve it. Special methods will be
necessary to avoid serious numerical problems.'

If a weighted error function is desired, (3.15) is modified to give

The normal equations of (3.19) become

where W is a positive-definite matrix of the weights. If zero weights are desired,
the effect is achieved by removing those frequencies from the set of L frequencies,
not by using a zero-value weight, which would violate the vector space
conditions of a well-posed minimization problem.

Although developed here for the linear-phase filter, (3.22) is a general design
approach for the FIR filter that allows arbitrary-phase sampling as well as
uneven frequency sampling and a weighting function in the error definition. For
the arbitrary-phase case a complex F is obtained from sampling (2.5). For the
special case of the equally spaced frequency samples and linear-phase filter with
unity weighting, the solution of (3.19) or (3.22) is the same as given by the
frequency-sampling design formulas in (3.4).

An important use of the unequally spaced frequency samples is the creation of
a transition band between the pass band and the stop band where there are no
samples. This "don't care" band does not contribute to the error measure E and
allows much better approximation to occur over the pass band and stop band.

Of the many ways to solve (3.19) or (3.22), one of the easiest and most reliable
is the linear algebra software package LINPACK,' which has a special program
to solve this least mean squared error problem. Equation (3.20) should not be
solved directly. For large L it is ill conditioned, and a direct solution will
probably have large errors. LINPACK uses special algorithms to minimize
these numerical errors.

This approach was applied to the same problems that were solved by
frequency sampling in the previous section. For N = L the same results were
obtained, thus verifying the theoretical prediction. As L becomes larger
compared to N, more control is exerted over the behavior between the original
sample points, and the solution approaches the same results as obtained in the
next section, where the error is defined as a continuous function of frequency
and the integral of the squared error is minimized. A program that calls
LINPACK to design a linear-phase FIR filter by these methods is Program 2 in
the appendix. Although the solution of the normal equations is a powerful and
flexible technique, it can be slow, have numerical problems, and require large
amounts of computer memory.

3.2 Least Squared Error Frequency-Domain Design 49

Example 3.3. Low-pass Filter Designed by Discrete Least Squared Error
The same desired frequency response as used in Example 3.1 with a band

edge off, = 0.25 Hz is used with the discrete LS error design method of (3.19).
Program 2 in the appendix is used to find the length-21 filter coefficients. Over
81 frequency samples are optimized. The coefficients can also be found from (3.4)
and Program 1; use a length of 81 and truncate to length 21. The coefficients are

Figures 3 . 4 ~ and 3.4b illustrate the frequency response and Fig. 3 . 4 ~ the zero
locations for the length-21 filter. The filter has slightly less pass-band ripple and
a minimum stop-band attenuation of 20 db. The zeros in the stop band are no
longer equally spaced as they were for the frequency-sampling design. The
simple frequency-sampling design forces the zeros and ripples to be equally
spaced. By this not being the case for the LS error design, it obtains less pass-
band ripple and more stop-band attenuation simultaneously. Note the zero
locations compared to those in Fig. 3 .2~.

Example 3.4. Low-pass Filter with a Transition Region Designed by Discrete
Least Syuured Error

Figure 3.5 illustrates the frequency response of a length-21 filter designed
with a transition region and a linear transition function. The pass band goes
from f =O to f = 0.2, the transition region is from f = 0.2 to f = 0.3 with a
linear transition function, and the stop band is from f = 0.3 to the Nyquist
frequency f = 0.5 Hz. Note the reduction in the overshoot near the band edges
as compared with Example 3.3. We used Program 2 to design this example,
optimizing over 199 samples, with a modified section for the desired response.
The same result could also be obtained by truncating a frequency-sampling
design. The filter coefficients are

FIGURE 3.4. Low-pass FIR filter by discrete LS error.

3.2 Least Squared Error Frequency-Domain Design 51

Imag (2) z plane

I 0

FIGURE 3.4. (Continued)

Example 3.5. Low-pass Filter with a Transition Band Designed by Discrete Least
Squared Error over the Pass Band and Stop Band

Figure 3.6 illustrates the frequency response of a length-21 filter designed
with unequally spaced frequency samples so that the transition region is not
included in the error at all. There are 336 frequency samples equally spaced over
the same pass band and stop band as in Example 3.4. Note the further reduction
in overshoot, which is the result of putting no constraints on the transition
region response. The filter coefficients were calculated from Program 9 in the
appendix, with the ideas from (3.19), and are

Summary

This section formulated an FIR filter design problem based on an LS error
criterion and developed two methods of solution. The first method requires the
samples of the desired frequency response to be equally spaced and the error to

FIGURE 3.5. Low-pass filter with transition region by discrete LS error.

FIGURE 3.6. Low-pass filter with a transition band by discrete LS error over the pass band and
stop band.

54 Design of Linear-Phase Finite Impulse-Response

have no weighting function. When these conditions are met, a length-L IDFT
can be used to design an FIR filter, which is truncated to length N to give an LS
error FIR filter from an arbitrary, desired frequency response. If a linear-phase
FIR filter is desired, special design formulas for the length-L prototype are
available and are implemented in Program 1. In both cases the problems are
numerically well conditioned, and the design calculations are fairly fast. If the
FFT can be used for the IDFT, they can be very fast. Because this method can be
applied to an arbitrary desired frequency response, the excessive oscillation that
occurs near a discontinuity in the desired response, known as the Gibbs
phenomenon, can be reduced by using a transition region between the pass band
and stop band with a transition function to remove the discontinuity.

The second method of solution requires solving the normal equations, which
are a set of overdetermined simultaneous equations. This formulation is more
general in that it allows unequally spaced frequency samples and an error weight
function, but it is slower and often numerically ill conditioned. The solution is
best achieved by using special algorithms that minimize the inherent numerical
errors of this approach. The FORTRAN program in the appendix (Program 2)
solves this problem with the software subroutines in LINPACK.' This method
allows the use of a transition band between the pass band and stop band, which
does not contribute at all to the error measure. It also allows weighting the error
to get a better approximation in some regions. The length of a filter that can be
designed by this method is limited by the size of the computer memory available
and by numerical errors. When it can be used, the results are excellent.

3.2.2 Integral Squared Error Approximation Criterion

In the previous section the value of the amplitude of the frequency response was
controlled by using an error function that was defined over L frequency samples
where L was greater than the filter length N. In certain cases, such as for the
basic low-pass filter, it is possible to find an analytical solution to the problem
where the error is defined as an integral over all of the frequency response. This
section develops that case.

An error measure is defined as the integral of the square of the difference
between the actual amplitude and the desired amplitude over the basic
frequency range of -n < o < n. This measure is called the integral squared
error1 -4.

I A (o) - Ad(w)lZ d o .

The result of minimizing this error measure will be close to that obtained from
minimizing the discrete error measure in (3.15) for very large L.

If we assume that the filter impulse response h(n) is infinite in duration and
symmetric about the origin, then there is zero phase shift, and the amplitude of

3.2 Least Squared Error Frequency-Domain Design 55

the frequency response can be written as

which is simply the Fourier transform of h(n), with an inverse of

1 "
h(n) = - 1 d(w)e"" d o .

2n u - z

Parseval's theoremL3-l6 states that the energy in a signal can be calculated in
the time domain as well as in the frequency domain. Equation (3.23) becomes

where h,, is the inverse transform of A , (o) , calculated by (3.25), and h, is the
length-N filter with frequency response A(w) . Because h, is of finite length N, the
error summation can be split into two sums

where M = (N - 1)/2. This expression clearly shows that to minimize E, the N
values of h, should be chosen equal to the corresponding N values of h,,, The
residual error for the optimal h, is given by the second summation.

Another interpretation of these equations is that (3.24) is a Fourier series
expansion of the periodic function A (o) , and the second equation is the formula
for the series coefficients. From the theory of Fourier series we know that a
truncated series is an optimal approximation to the expanded function in the
sense that the integral squared error is minimized.

For the type 1 linear-phase FIR filter described in Section 2.2, which has odd
length N and an even-symmetric impulse response, the amplitude frequency
response from (3.24) is

with an infinite, noncausal impulse response of

h(n) = - A.(w)cos(wn) d o . : 1:

56 Design of Linear-Phase Finite Impulse-Response

The type 2 filter, which has an even length, can be designed by modifying this
approach, which is illustrated in the development for the ideal low-pass filter
later in this section. The design method is summarized as follows:

If the impulse response of a linear-phase FIR filter is found by symmetrically
truncating the Fourier series expansion of the desired amplitude response, the
resulting filter will have an amplitude response that is an LS error approximation to
the desired response.

This method is similar to the results obtained in the last section with the discrete
LS error criterion and can be used either analytically or numerically for any
desired amplitude response that satisfies the conditions required of a linear-
phase FIR filter as given in Section 2.2.1.

The main limitation of this design method is the difficulty in calculating h,,
from A,(o). This problem exists because the calculation requires evaluating the
integral in (3.25) rather than the sum in (3.4) for the discrete frequency
formulation of the LS error design. For only a few practical desired frequency
responses can a formula be derived. Fortunately, it is possible for the basic low-
pass filter with desired amplitude given in Figs. 3.la and 3.lb.

For the low-pass filter we assume that the desired amplitude is unity from
w = 0 to o = Wn, and zero from o = Wn to o = n, as shown in Fig. 3.7.

For N odd the base frequency range for the coefficient equation (3.25) is - n
to n (or 0 to 2n). The desired amplitude is 1 from - Wn to Wn, where W is the
cutoff frequency of the filter expressed as a fraction of the total range from 0 to n
(see Fig. 3.7). The ideal or desired amplitude is given over the frequency range
- n < o < n b y

1 for - Wn < w < Wn,
A(o) =

0 otherwise.

From (3.25) the impulse response

becomes

sin(Wnn)
h(n) = ,

nn

FIGURE 3.7. Ideal low-pass filter response for odd N

3.2 Least Squared Error Frequency-Domain Design 57

which has even symmetry about the origin and therefore is noncausal. Since it is
infinitely long, it is not physically realizable. However, this h(n) gives the exact
desired frequency response of (3.26) and Fig. 3.7. To make this result physically
possible, we truncate the impulse response of (3.27) (symmetrically to maintain
the linear-phase property), which, according to Fourier series theory, gives a
finite-length impulse response with an amplitude that is an LS error approxi-
mation to the desired response. The finite-length h(n) is shifted to the right to
make it causal. The shift only adds a linear phase and does not destroy the
minimum error property.

To obtain a length-N filter, we truncate the impulse response by setting all
terms for n < - M and n > M egual to zero, where M = (N - 1)/2, as defined in
(2.16). The response is then shifted to the right by M terms, and the result is a

- causal, optimal LS error FIR filter. The resulting impulse response is

sin(Wn(n - M))
O < n < N - 1 ,

(0 otherwise.

If the transition between the pass band and the stop band is expressed as f, in
hertz rather than W as a fraction of the 0 < o < n region, and if the sampling
rate is one sample per second, (3.28) becomes

sin(2&(n - M))
O < n < N - 1 ,

n(n - M) '

1 0 otherwise.

See Fig. 3.8.
The derivation of h(n) for even N is slightly more complicated because there is

no zero-phase, even-length FIR filter corresponding to (3.27) and Fig. 3 .8~ . The
amplitude response of the ideal low-pass filter with even N is given in Fig. 3.9. By
using a frequency range of - 2n to 2n, we obtain a double-length h(n) with zero
values at the even indices. It is compressed to length N by simply removing the
zero values and then truncated and shifted to give an even-length optimal filter.
The process is illustrated in Fig. 3.10.

The design formula for the even-length case is exactly the same as for the odd
length given in (3.28), but note that M is now a fraction.

Example 3.6. Length-21 Low-pass Filter Designed by Least Squared Error
This example is the straightforward, continuous, LS error design given by

(3.28) with simple truncation. The frequency response and zero locations given
in Fig. 3.1 1 are very similar to those resulting from the discrete LS error method
in Fig. 3.4 for a band edge off, = 0.25 Hz. The filter coefficients calculated by

58 Design of Linear-Phase Finite Impulse-Response

FIGURE 3.8. Design of optimal LS error FIR filter.

A d (d

FIGURE 3.9. Ideal low-pass filter response for even N.

Program 4 in the appendix with a rectangular window are

3.2 Least Squared Error Frequency-Domain Design 59

FIGURE 3.10. Design of optimal LS error FIR filter for even N.

Note that the even-indexed terms are all zero except for the center term h(10).
This situation occurs because the band edge is exactly one half of the Nyquist
frequency. This advantage is important in implementing the filter because these
multiplications need not be carried out. In practical applications a possible
change in the band edge or the sampling rate should always be considered as a
method to reduce arithmetic. This design is the classic LS error low-pass FIR
filter and it should be compared to the other FIR filter designs in this book.

The Gibbs Phenomenon
As shown in this and previous examples, the amplitude frequency response of
the low-pass filter has an oscillating behavior that is more pronounced near the
edge of the pass band. This behavior is known as the Gibbs phenomenon15.16 and
is the result of approximating a discontinuity in the desired frequency response.
Early in the study of Fourier series, it was found that if a function with a
discontinuity was approximated by a Fourier series, there would be an
overshoot in the region near the discontinuity. As the number of Fourier series
terms increased, the squared error decreased and approached zero as the
number of terms approached infinity. However, the maximum value of the
overshoot, and therefore the maximum value of the error, did not go to zero but
approached a constant value of approximately 11% of the size of the discontinu-
ity. See Fig. 3.12. This behavior is exactly what happens in the case of the LS
error design of a low-pass FIR filter. Although it is less well known, it also
happens in the frequency-sampling design method where it approaches approx-
imately 18% of the discontinuity. See Fig. 3.13.

The Gibbs phenomenon overshoot may be undesirable, but it is a direct
consequence of minimizing the squared error when approximating a discontinu-
ity with no transition region. Any reduction of the overshoot increases the value
of the squared error. This basic conflict of desired properties causes a rethinking
of the whole formulation of the LS error design problem.

FIGURE 3.11. Length-21 low-pass FIR filter by LS error.

(cl

FIGURE 3.1 1 . (Continued)

W

FIGURE 3.12. The Gibbs phenomenon in LS error filter design.

W

FIGURE 3.1 3 . Example of overshoot for frequency-sampling design.

62 Design of Linear-Phase Finite Impulse-Response

Least Squared Error Approximation of a Differentiator
The preceding development has considered the approximation of an ideal low-
pass filter. The ideal differentiator can also be well approximated by a linear-
phase FIR filter. The frequency response of a differentiator is

Because A(w) is an odd function of w and there is a constant 90" phase shift, the
design should use type 3 or type 4, as defined in Section 2.2.1 and described in
Table 2.1. If the differentiation is to be combined with a low-pass filter to reduce
high-frequency interference, type 3 should be used because it always has a zero
response at A(n). If the widest possible bandwidth is desired, type 4 should be
used.

For the design of a type 3 differentiator that has odd length N, AAw) is
defined over - n < w < n and is periodic with period 2n, which was the case for
the low-pass filter in (3.26) shown in Fig. 3.7. The filter coefficients are derived
from (3.1) and are given by

For the design of a type 4 wide-band differentiator with even N, we define
A,(w) over -2n < w < 271, which is periodic with period 4n, as was the case for
the low-pass filter of Fig. 3.9. The ideal response is

The filter coefficients are

These results must be truncated and shifted, as for the low-pass filter, to give a
length-N causal filter. An implementation of these two differentiator designs is

3.2 Least Squared Error Frequency-Domain Design 63

given in the appendix in Program 5. The Gibbs phenomenon occurring in the
type 3 approximation can be reduced by truncating with windows (see Section
3.2.3.4), but the LS error optimality will be lost.

Examples 3.7 and 3.8. A Least Squared Error Design of Type 3 and Type 4
Differentiators

Figure 3.14 shows the frequency response of a type 3 differentiator designed
by Program 5 from (3.30) and truncated for length 21. Note the zero response at
f =0.5, which is characteristic of all type 3 filters. Figure 3.15 shows the
frequency response of a length-20, type 4 differentiator from (3.31). Note the
wider frequency range of the approximation and the reduction in overshoot
even though the length is shorter than the type 3 example. The filter coefficients
for the differentiators are

Length-2 1 differentiator Length-20 differentiator

Least Squared Error Approximation with a Transition Region
The FIR filter design problem can be made much more versatile and flexible by
introducing a transition region between the pass band and the stopband, as
illustrated in Fig. 3.lb. This formulation fits the way filter specifications are
usually given much better than using one frequency to specify the separation of
the pass band and stop band. Also, the Gibbs phenomenon can be eliminated,
and the approximation in the pass band and stop band can be improved by the
transition region.

If a transition function is defined as part of the ideal response to connect the
unity pass-band response and zero stop-band response, the shape of this
function can be chosen to minimize the approximation error for a given length.
The pass band is defined as 0 < f < f,, the transition region as f , < f < f2, and
the stop band as f 2 < f < 0.5. The transition function H,(f) is defined over the
transition region. A development similar to that for the simple no-transition-
region case can give analytical formulas for optimal LS error h(n) for several
interesting transition functions. This ideal response is shown in Fig. 3.16, with
the frequency f given in hertz.

0

FIGURE 3.14. Length-21 FIR differentiator by LS error.

0

FIGURE 3.15. Length-20 FIR differentiator by LS error.

3.2 Least Squared Error Frequency-Domain Design 65

If the transition function is a simple straight line (first-order spline) connect-
ing the pass-band response to the stop-band response, the impulse response is

sin(n(f2 -fl)(n - MI) sin(n(f2 +flXn - MI) , O d n G N - 1 ,
n(f2 -fiHn - M) n(n - M)

otherwise.
(3.32a)

We can derive (3.32a) directly from the inverse Fourier transform of the desired
ideal response A,(o) by using (3.25), in much the same way as (3.28) was
developed. An alternative approach is to observe that the ideal response of Fig.
3.16, which has a first-order spline (straight-line) transition function, can be
created by convolving an ideal rectangular response whose band edge is at
(f2 + f,)/2 with a narrow rectangular function whose width is f2 - fl and whose
height is l/(f2 - f,). This approach gives the inverse Fourier transform of the
final desired function as being 2n times the product of the inverse transforms of
the two rectangles. That can easily be seen by comparing the second term in
(3.23a) to (3.29) with a band edge of the average off, and f2 and noting that the
first term is the same as (3.29) with a total width of f2 - f,.

If the transition function is a second-order spline (two sections of parabolas),
the impulse response is

otherwise.

(3.32b)

We can also derive (3.32b) directly from (3.25) or indirectly by convolving two
half-width rectangles to obtain a triangle function of width f2 - f,, which is then
convolved with the basic ideal filter response to get the desired transition
function.

f l f 2 0.5
1 f (Hz)

Pass band Transition Stop band
region

FIGURE 3.16. Ideal response with a transition region.

66 Design of Linear-Phase Finite Impulse-Response

We can easily generalize (3.32b) to higher-order spline transition functions.
An optimal LS error approximation to an ideal response with a P-order spline
transition function is given by

(0 otherwise.

Equation (3.32~) is derived by convolving together P rectangles of width 1/P and
then convolving the result with the basic filter response. It is possible to create
other P-order splines by using unequal widths as long as the final width gives the
correct transition width.

An alternative transition function that can result in an analytical solution
uses sections of trigonometric functions. One useful function is the raised cosine
defined by

1, O < f < f l ,

AAf) = 1 1 + cos (;:I:))), f l < f < J ~ ,

This definition gives an FIR filter with coefficients given by

cos(n(f2-flXn-M) sin(n(f,+flXn-M)) O < n < N

- 4(f, - f1),(n - M)' n(n - M)

otherwise

(3.33)

This function can be generalized by adding higher-frequency cosine terms to
give a smoother transition. It can also be combined with the spline functions to
give a very rich class of possible transition functions for flexible design.

The faster the coefficients h(n) decrease with increasing n, the smaller the error
that will result when the inverse Fourier transform is truncated. Fourier
t h e ~ r ~ ' ~ . ' ~ shows that the smoother A(o) is, the faster h(n) drops off with
increasing n. If A(o) can be differentiated Q times with finite results, h(n) will
drop off as a multiple of l/n to the (Q + 1)st power. Note that is the case for the
results of (3.28) and (3.30)-(3.33).

Using a transition region with an LS error approximation design procedure
gives a much more flexible and useful method, yet it retains the optimality of the

3.2 Least Squared Error Frequency-Domain Design 67

designed filter. It is, however, ad hoc in the sense that the transition function
must be chosen by experience and trial. The choice of transition function
depends on the transition width, the bandwidth, and the filter length N. The
result is in the form of a weighted version of the simple no-transition design,
which is similar to the result of using windows (discussed in Section 3.2.3.4), but
it is more directly related to the specifications and optimality criterion.

The concept of transition regions can also be used to design other than low-
pass filters. For example, it can be used with the differentiator, Hilbert
transform, high-pass, and other designs.

FORTRAN Program 3 designs least integral squared error linear-phase FIR
filters with an ideal low-pass response and a transition region. It allows a choice
of P-order splines and a raised cosine transition function.

Example 3.9. Least Squared Error Design of a Low-pass FIR Filter with First-
Order Spline Transition Function

Figure 3.17 shows the frequency response of a filter with f, = 0.2 and
S, = 0.3 Hz, the same pass-band and stop-band specifications as Examples 3.4
and 3.5. This filter was designed from (3.32a). A first-order spline transition
function and Program 3 were used. The filter coefficients are

Summary

This section defined an integral squared error and described a design procedure.
One reason why the mean squared error criterion is useful is that it is a measure
of energy. The power of a signal is a function of the square of the signal. That is
easily seen when the signal is a voltage or current, or perhaps a force or velocity.
Since the energy of a signal is the integral of its power, the integral squared error
is proportional to the energy of the error. Other considerations are sometimes
important, such as the maximum value of the error. Unfortunately, filters
designed to minimize the integral squared error often do not have good
maximum error characteristics if the desired response has discontinuities or
rapid changes and no transition region.

The basic ideal low-pass filter design problem can be solved analytically and

FIGURE 3.17. Low-pass filter with a transition region by LS error.

3.2 Least Squared Error Frequency-Domain Design 69

a formula can be derived. This analytical result is simple yet powerful. It allows
us to design arbitrary even- or odd-length, optimal LS error, linear-phase FIR
filters by a formula easily evaluated on a pocket calculator. A length-21 example
is given as Example 3.4.

Analytical design formulas were derived for LS error approximations to ideal
differentiators. Two cases were presented: one for odd length, where there is
necessarily a zero response at w = n, and one for the wide-band case. These
results could be extended to combine with the low-pass filter or to incorporate
transitions regions or other modifications.

Introducing a transition region and a transition function into the formulation
of the ideal frequency response produced considerable improvement in the
approximation and added flexibility in specifying the filter. Analytical solutions

. were developed for several interesting cases with spline and trigonometric
transition functions. This method is a powerful design algorithm. Program 3,
which designs LS error low-pass filters with a transition region, is given in the
appendix.

3.2.3 Transition Regions, Weighting Functions,
and Windows for FIR Filter Design

Four approaches can improve the characteristics of filters designed by minimiz-
ing the squared error and can reduce the overshoot occurring near a discontinu-
ity. The most straightforward solution is simply to change the desired frequency
response so that there is no discontinuity and, therefore, no Gibbs phenomenon.
This method has already been introduced and is easily carried out by having a
transition region in the frequency response between the pass-band region and
the stop-band region. That would allow a transition function for the desired
response that would connect the pass-band and stop-band ideal responses.

The second approach is to change the error criterion in such a way as to
reduce or remove the overshoot. That can be done by removing a region from
the optimization. That region is then called a transition band or "don't care"
region. We can do it by using unequally spaced samples in the discrete LS error
method.

The third approach changes the error measure by introducing a weighting
function in (3.23) to weight the error more where there is overshoot and/or less
over regions that are not as important, such as the transition region.

The fourth method uses the result of a regular LS error design, such as (3.14),
(3.28), (3.30), or (3.32), and directly modifies h, to reduce the overshoot, but the
result will no longer be optimal. Since the overshoot is caused by truncating the
finite length-L sequence (3.14) or the infinite sequence (3.25), it can be reduced by
a more gentle truncation achieved with time-domain

These ideas, which look at design in a broader sense, can be applied not only
to continuous LS error problems, defined in Section 3.2.1, but to the discrete LS
error problem of Section 3.2.2.

70 Design of Linear-Phase Finite Impulse-Response

3.2.3.1 Modification of the Desired Frequency Response
In most filtering applications there is a range of frequencies that contain the
spectrum of the desired signal, called the pass band, and a range that contains the
undesired signals or noise, called the stop band. To ease the design problem, we
define a transition band between the pass band and the stop band. The wider we
make this band, the better we can make the approximations in the pass band
and stop bands. The simplest modification to the desired amplitude response is
to connect the unity gain in the pass band to the zero gain in the stop band by a
straight line (see Fig. 3.lb). The desired amplitude response is

(pass band (0 < 0 < 4,
o , - o

transition region ((0, < o < o,),

stop band (0, < o <TI).

The solution to the integral LS error approximation problem was given in
(3.30a). More complicated spline and trigonometric transition functions can give
further improvement and are given in (3.30). With the discrete LS error method
and the frequency sampling method, the introduction of the transition region
can also significantly reduce the Gibbs phenomenon and give greater control
over the design process.

3.2.3.2 Use of a Transition Band
One of the most effective modifications of the direct LS error design methods is
to change the bands of frequencies over which the minimization is carried out. In
Section 3.2.3.1 a transition function is defined over the transition region of
frequencies to create a continuous ideal frequency response to be approximated.
In this section the band of frequencies for the transition region is simply
removed from the error definition, and the region is called the transition band or
"don't care" band. The error in (3.23) becomes

E = JU ' J A (o) - Ad(co)12 d o + IA(o) - A,(w)12 d o . (3.34)
0

This transition band will give less squared error and can give a greater
reduction of the overshoot than a transition function can because there is no
constraint placed on A(o) in the transition region. Some sets of specifications,
however, will result in strange behavior in the transition band. If "don't care" is
stated, it must be intended. Some experimentation will probably be necessary.
This kind of design is best performed interactively where the results of various
modifications and weighting functions can be compared.

3.2.3.3 Use of a Weighted Mean Squared Error Criterion
Flexibility is added to the definition of error given in (3.23) by introducing a
positive weighting function W (o) to give

3.2 Least Squared Error Frequency-Domain Design 71

E = IS" W (o) l A (o) - Ad(o)12 d o ,
0

similar to that used with the discrete LS error case in (3.21). With this new
function, more weight can be given to the approximating error in regions of
greater interest or importance. Using the transition band introduced in Section
3.2.3.2 can sometimes result in undesirable behavior of the designed filter in that
band. In those cases it may be preferable to use a transition function with a small
weight to place some control over the transition region. In some cases a
transition band with weighting functions has advantages. As we noted before, it
is very important to try and compare different design philosophies by some kind
of interactive design and analysis system.

3.2.3.4 Use of Window Functions in the Design of FIR Filters
The truncation of the infinite or length-L time-domain sequence causes the
Gibbs phenomenon at a discontinuity in the frequency domain. This truncation
can be viewed as multiplying the prototype time-domain sequence by a
rectangular function that has value unity for - M < n < M and zero outside
that range. If h,(n) is the ideal prototype sequence symmetric about 0 and h(n)
the finite truncated result, the process can be described by

where

with M = (N - 1)/2 for N odd. The infinite-duration impulse response hd(n),
with values given by (3.27) and illustrated in Fig. 3.8a, is multiplied by r(n) to give
h(n), as shown in Fig. 3.8b. The response h,(n) has the ideal desired frequency
response of (3 .26) and Fig. 3.1, and h(n) has the realizable frequency response
with the undesirable overshoot.

Multiplication of two functions in the time domain corresponds to convol-
ution of the Fourier transforms of the two signals. Indeed, it is a good way to see
what causes the Gibbs phenomenon. The Fourier transform of the rectangular
function used for truncation is

m

R (w) = FT{r(n)) = r(n) e- jUn (3 .37)
n = - a)

If the Fourier transforms of hd(n) and h(n) are H d (o) and H (w) , respectively, the
time-domain truncation operation given in (3 .37) is described in the frequency

72 Design of Linear-Phase Finite Impulse-Response

FIGURE 3.18. The Fourier transform of a rectangular function.

domain by

which states that the frequency response of the finite-length filter is equal to the
ideal frequency response convolved with a transform of the rectangular function
given in (3.38). The frequency response of the width-N rectangular function R(w)
near o = 0 appears as shown in Fig. 3.18.

The result of convolving this oscillating function with the ideal low-pass
frequency response gives the Gibbs phenomenon overshoot. We can see from
Fig. 3.18 that as N gets larger, the width of the main part of the oscillating
function grows narrower, although the height remains the same.

It is the existence of and size of the oscillating side "lobes" of R(w) that cause
the Gibbs phenomenon. An ideal R (o) would be smooth and, therefore, cause no
overshoot. It is the width of the main part of R (o) that causes the slow transition
from the pass band to the stop band. An ideal R (o) would have zero width. This
ideal function would be a Dirac delta function that, when convolved with the
desired low-pass filter response, would introduce no change. For a finite-length
filter this is impossible, but it does give an ideal for R(w) to approximate.

Six standard windows found in the literature are1-4,9.10

1. Bartlett triangular window:

(0, otherwise.

3.2 Least Squared Error Frequency-Domain Design 73

2-5. Generalized cosine windows
(rectangular, Hanning, Hamming, and Blackman):

(07
otherwise (3.41)

6. Kaiser window with parameter b:

otherwise. (3.42)

The generalized cosine window has four special forms that are commonly
used. These are determined by the parameters a, b, and c.

Window a b c

Rectangular 1 0 0
Hanning 0.5 0.5 0
Hamming 0.54 0.46 0
Blackman 0.42 0.5 0.08

The most straightforward of these windows is the simple rectangular window,
which gives the simple truncation and the classical Gibbs phenomenon. The
Bartlett or triangular window reduces the overshoot but spreads the transition
region considerably. The Hanning, Hamming, and Blackman windows use
progressively more complicated cosine functions to provide a smooth trun-
cation of the ideal impulse response and a frequency response that looks
progressively better. The best window results probably come from using the
Kaiser window, which has a parameter j that allows adjustment of the
compromise between the overshoot reduction and transition region width
spreading. Pass-band and stop-band ripple and transition width can be
converted into a filter length N and a parameter j.' The Kaiser window requires
calculating a Bessel function. A simple subroutine that evaluates this Bessel
function is used in Program 4 in the appendix.

Plots of these window functions are shown in Fig. 3.19 to illustrate the
various shapes that try to reduce the effects of the truncation without changing
the basic characteristics of the LS error filter.'-4

Example 3.10. Length-21 Low-pass Filter with a Hanning Window
The filter designed in Example 3.6 is truncated by using a Hanning window

described in (3.41) to give the results in Fig. 3.20. Note the smoother pass-band
and greater stop-band attenuation but the wider transition region from pass

1. Rectangular Window
2. Bartlett Window

n
5. Blackman Window

FIGURE 3.19. Window functions for linear-phase FIR filter design.

W

(al

FIGURE 3.20. Length-21 low-pass filter with a Hanning window.

3.2 Least Squared Error Frequency-Domain Design 77

Real (2)

(ci

FIGURE 3.20. (Continued)

band to stop band. The filter coefficients are

Example 3.11. Length-21 Low-pass Filters with Kaiser Windows
The flexible Kaiser window in (3.42) is used with the parameter fi equal to 4,

6.5, and 9 to give the results in Fig. 3.21, 3.22, and 3.23, respectively. Here, the
pass band is very smooth, and the parameter fi allows a tradeoff between
transition width and stop-band attenuation.'q4 The coefficients are

FIGURE 3.21. Length-21 low-pass filter with a Kaiser window, fl = 4.

C
I plane

lrnag (I:

/ci

FIGURE 3.21. (Continued)

Compare the coefficients resulting from the various windows and note how fast
they decrease as n increases.

Example 3.12. Length-101 Low-pass Filter with a Kaiser Window
To illustrate the effects of filter length, we designed a length-101 low-pass

filter, using the same method as Example 3.6 but with a greater length. Compare
the results in Fig. 3.21 to that for the length-21 filter in Fig. 3.24. Increasing the
length improves all characteristics except, of course, the implementation
problems.

FIGURE 3.22. Length-21 low-pass filter with a Kaiser window, P = 6.5

z plane
Irnae. (2)

(cJ

FIGURE 3.22. (Continued)

Summary
This section considered four methods of modifying the straightforward LS error
FIR filter design. The simplest and probably the best is to change the ideal
frequency response being approximated. Introducing a transition region with a
transition function significantly reduces the resulting approximation ripple or
Gibbs phenomenon and still allows the use of the special formulas and IDFT
methods of Sections 3.1, 3.2.1, and 3.2.2.

Introducing a transition band with no contribution to the error measure
requires solving the normal equations and does not allow using formulas or the
IDFT because of unequally spaced frequency samples. This approach is more

0

FIGURE 3.23. Length-21 low-pass filter with a Kaiser window, j3 = 9.

82 Design of Linear-Phase Finite Impulse-Response

0

z plane

Image (2)

FIGURE 3.23 . (Continued)

prone to numerical errors, is fairly slow, and requires considerable computer
memory. However, when it can be used, it gives excellent approximations. Error
weighting functions can also improve the approximation, but their use requires
solving the normal equations.

Time-domain window functions were shown to reduce the effects of trun-
cation in the LS error FIR filter design procedure. Six different window
functions were presented, and the results of the Hanning and Kaiser windows
were shown in examples.

W

fa)

FIGURE 3.24. Length-101 low-pass filter with a Kaiser window.

3.3 Chebyshev Approximation 83

FIGURE 3.24. (Continued)

The use of windows is a somewhat ad hoc method of altering an optimal LS
error design to reduce the Gibbs phenomenon at the band edge. This reduction
of the overshoot increases the mean squared error but in a way difficult to
predict. Because of this difficulty and the discovery, by Parks and
M ~ C l e l l a n , ' ~ ~ ~ ~ ' that the Remes exchange algorithm directly attacks the
overshoot reduction, windows are not used as much as they once were. If the
simplicity of design by the windowed LS error method is desired, the Kaiser
window is probably the best and certainly the most v e r ~ a t i l e . ' , ~ ' ~ . ~ . ' ~

Program 4 in the appendix designs the six different types of windowed filters.
As with all the design methods, their characteristics are best understood by
experimentally designing filters with an interactive system where the frequency
response can be easily displayed or plotted.

3.3 CHEBYSHEV APPROXIMATION

Figures 3.12 and 3.13 showed peaks or overshoots in the frequency response
that are typical of frequency sampling and LS designs. The windowing
techniques in Section 3.2.3.4 are attempts to reduce the peaks in the error
function (the difference between the desired frequency response and the actual

84 Design of Linear-Phase Finite Impulse-Response

frequency response). By carefully applying various windows, the maximum error
in the frequency response can be reduced. A natural question to ask is just how
far can the maximum error be reduced? The theory of Chebyshev approxi-
mation, when applied to the filter design problem, answers this question and
provides algorithms to find the coefficients of a linear-phase FIR filter that has a
frequency response with this minimum value for the maximum error. An
approximation that minimizes the maximum error over a set of frequencies is
called a Chebyshev approximation."^" Filters that have the minimum value of
the maximum error exhibit an equiripple behavior in their frequency re-
sponse~. '~ Thus, these optimum Chebyshev filters are sometimes called
equiripple filters.

One of the earliest reports on the design of Chebyshev FIR digital filters was
a General Electric report by M. A. Martin in 1962.20 Most of the papers on the
subject were published in the early 1970s. Tufts, Rorabacher, and Moser
published some examples in 19702'; then Tufts and Francis22 compared
minimax designs with LS designs. Helms, in 197223, described techniques,
including linear programming, to solve the Chebyshev approximation problem
for filter design. In 1970, Herrmann published an article describing the
equations that must be solved to obtain a filter with the maximum possible
number of equal ripples24 (Later called extra-ripple25 or maximal-ripple19
filters). Schussler, in 1970, presented the work he and Herrmann had been doing
on the design of maximal-ripple filters at the Arden House workshop.26
Hofstetter developed an efficient algorithm for solving the equations proposed
by Herrmann and Schussler and presented papers with Oppenheim and Siege1
at the 1971 Princeton conference2' and the 1971 Allerton House conference2'
describing the algorithm and relating it to the Remes exchange algorithm.

In 1972, at the Arden House workshop, Parks described his work with
McClellan on a direct application of Chebyshev approximation theory to the
filter design problem using the Remes exchange algorithm,29 and Parks and
McClellan published a description of a design algorithm that used some of the
computational techniques of Hofstetter's a lg~r i thm.~ ' Hersey et al. described, at
about the same time, an interactive method for designing filters with upper and
lower constraints on the magnitude of the frequency response3'. They also
pointed out in their 1972 paper3' that the Remes exchange algorithm could be
used to design FIR linear-phase filters with the Chebyshev error criterion. The
algorithm described in reference 30 has come to be known as the Parks-
McClellan algorithm. A comprehensive paper, published with Rabiner,19 gives
a good summary of properties of filters designed with this algorithm. A program
implementing the Parks-McClellan algorithm was published by the IEEE Press
and is reprinted by permission of the IEEE as Program 6 in the appendix.

This section begins with a review of the characteristics of FIR filters with
linear phase and describes the four different types of filters in detail. Some basic
ideas from the theory of Chebyshev approximation are then presented. These
concepts lead to the equiripple property of optimum filters. The Remes
exchange algorithm is developed and adapted to the design of those linear-phase

3.3 Chebyshev Approximation 85

filters that best approximate a desired frequency characteristic in the Chebyshev
sense.

3.3.1 Four Types o f Linear Filters

As indicated in Section 2.2, there are four types of linear-phase FIR filters. All
four types have a frequency response

where ACf) is a real-valued positive or negative function. In this section the
frequency variablef, with units of cycles per second or hertz, is used along with a
normalized unit sampling rate in order to be consistent with the literature in this
area. The relation between this frequency variable and the radian frequency o is
o = 2nJ If the filter has h(n) = h(N - 1 - n), it is said to have even symmetry
and m = 0 in (3.43). If, on the other hand, h(n) = - h(N - 1 - n), then the filter is
said to have odd symmetry and m = 1 in (3.43). For even symmetry there are two
types of filters corresponding to odd and even N. Similarly, for odd symmetry
there are two additional types of filters for odd and even N . In reference 32 it is
shown that ACf) can always be written as a weighted sum of cosines for all four
types of linear-phase filters. These formulas can be derived from equations (2.19),
(2.21), and (2.24) with the use of appropriate trigonometric identities. The
specific form of ACf) is given in Table 3.1.

If the impulse response h(n), n = 0,. . . , N - 1, has an odd length (if N is odd),

TABLE 3.1. Approximating Functions for Linear-Phase Filters

Symmetry

Even Odd
h(n) = h(N - 1 - n). (m = 0) h(n) = - h(N - 1 - n), (m = 1)

(N-1)/2 (N - 3)/2

Odd Length A (f) = 1 a, cos 2xkf A (f) = sin 2nf 1 ck cos 2xkf
(N) ,=o k = O

a. = h((N - 1) / 2) co -+c(2) =2h((N - 3) /2)

ak = 2h(-k+ (N - 1) /2) c ((N - 5) /2) = 4 h (l)

k = l (N - 1) /2 c ((N - 3112) = 4h(0)
c (k - 1) - c (k + 1) = 2h(-k+ (N - 7) /2)

k = 2,. . . , (N - 5)/2

IN- 3)/2

Even Length A(f) = cOS xf 1 bk cos 2nkf

(N)
k s o

bo + $ b (l) = 2h((N - 3)/2
b((N - 3112) = 4h(0)

b(k - 1) + b (k) = 4 h (- k + (N - 1) / 2)
k = 2 , (N - 3)/2

(N - 3)/2

A (f) = sin nf 1 dk cos 2nkf
k = o

do - fd(1) = 2h((N - 3) /2)
d ((N - 3) /2) = 4h(0)

- 1) - d(k) = 4h(-k + (N - 1) /2)
k = 2, . . . , (N - 3)/2

86 Design of Linear-Phase Finite Impulse-Response

there are two different linear-phase filters:

Type 1: even symmetry, odd length
Type 3: odd symmetry, odd length

As shown in Table 3.1 and Fig. 2.3, the odd-symmetry, odd-length filter (type 3)
has a frequency response that must be zero at f = 0 and at f = 0.5. That is, a type
3 filter should not be used for either a low-pass or a high-pass design. Further,
the type 3 filter introduces a phase shift of 90°, as shown by (3.43).

If the impulse response h(n) has an even length (if N is even), the resulting two
linear-phase filters are

Type 2: even symmetry, even length
Type 4: odd symmetry, even length

As shown in Table 3.1 and Fig. 2.3, the odd-symmetry, even-length filter (type 4)
has a frequency response that must be zero at f = 0 but not necessarily at
f = 0.5. The type 4 filter will make a good highpass filter, but it should not be
used for a low-pass filter. The even-symmetry, even-length filter (type 2) must be
zero at f = 0.5 but not necessarily at f = 0. This filter type will make a good low-
pass filter but not a good high-pass filter. As does the type 3 filter, the odd-
symmetry, even-length filter (type 4) introduces a phase shift of 90°, as shown by
(3.43).

3.3.2 Chebyshev Approximation for Linear-Phase Design

The desired frequency response for an ideal low-pass filter is shown in Fig. 3 . 1 ~ .
The ideal response is real (no phase shift), exactly unity in the pass band, and
exactly zero for the entire stop band. It is impossible for a causal FIR filter to
have exactly zero phase (except for the trivial case when h(0) = 1 and all other
coefficients are zero, in which case the stop-band transmission is unity). It is,
however, possible to obtain an FIR filter with linear phase for all frequencies, as
shown in Table 3.1. The group delay (negative of the derivative with respect to
frequency of the phase function 16) is a constant for all frequencies for linear-
phase filters. Further, it is impossible for an FIR filter to have exactly zero
transmission in the entire stop band (except for the trivial filter, which has zero
transmission for all frequencies). An acceptable frequency response, shown in
Fig. 3.lc, has the following characteristics:

1. Linear phase.
2. A width Af transition band between the pass band and stop band.
3. A deviation from unity of ACf) in the pass band of +dl.
4. A deviation from zero of A (f) in the stop band of +a2.

A more general filter design problem could have several pass bands and
several stop bands. Some of the bands could even consist of a single point when
specifying, for example, that the filter have a transmission zero at a specific
frequency. Further, some of these bands may be more important than others;

3.3 Chebyshev Approximation 87

therefore different weights should be put on different bands. The multiple bands
are assumed to make up a compact subset of the frequency band [0,0.5]. The
compact subset F in most applications is the union of closed intervals
(corresponding to frequency bands) and discrete frequency points. These
requirements for a good linear-phase filter are summarized in the following
statement of the approximation problem for linear-phase design.

Approximation Problem for Linear-Phase Design
Given the following:

A compact subset F of [0, 0.51.
A desired real-valued function DCf), defined and continuous on F.
A positive weight function W(f), defined and continuous on F.
The form of A(f) ,

. - I

We want to minimize over ck

by choice of ACf).
Each of the four types of linear-phase filters in Table 3.1 is described by (3.44),

where, by definition,

{
cos nf;

") = sin 2 n ~

After the coefficients of A(f) are found, the impulse response of the filter can
be determined from the simple relationships in Table 3.1.

The problem we have stated, which minimizes the maximum deviation over a
set of frequencies, is the Chebyshev approximation problem for designing FIR
filters. This problem leads directly to a characterization of the optimum filter in
terms of the alternation theorem. Only the type 1 approximation with QCf) will
be described in the following theory. The extension to the other three types of
filters with their corresponding Q(f) functions is s t r a i g h t f o r ~ a r d . ' ~ ~ ~ ~

The alternation theorem states that there is a unique best Chebyshev
approximation and that the (weighted) error of this optimum filter necessarily
has an equiripple character.

Alternation Theorem
If A(f) is a linear combination of r cosine functions-that is, if

88 Design of Linear-Phase Finite Impulse-Response

then a necessary and sufficient condition that A(f) be the unique, best weighted
Chebyshev approximation to a given continuous function D(f) on 9 is that the
weighted error function E(f) = WCf). [DCf) - ACf)] exhibit at least r + I
extremal frequencies in 9. These extremal frequencies are points such that, with
f 2 < f 2 < . - . f r < f r - 1 ,

and

1ECfi)I = max ECf).
f e y

The alternation theorem means that the best Chebyshev approximation must
necessarily have an equiripple error function. It also states that there is a unique
best approximation for a given set of frequencies, filter length N, and weight
function WCf). The phrase "at least r + 1 extremal frequencies" needs some
explanation. Since the best approximation for a given set of specifications is
unique, there will not be one filter with r + 1 extremals and another filter with
r + 2 extremals for the same specifications. For a given set of specifications, the
unique best filter may have more than r + 1 extremal frequencies. If, for
example, the optimum filter has r + 3 extremal frequencies, then by the
uniqueness property, there cannot be a filter with only r + 1 extremals for this
set of specijcations.

In Fig. 3.25 the frequency response of an optimum length-13 linear-phase
filter with even symmetry has eight extremal frequencies as required (r = 7). The
function ACf) for this filter is a sum of seven cosines (counting zero frequency).
There is one more extremal frequency than there are degrees of freedom in A(f) ,
as required by the alternation theorem. The alternation theorem characterizes
the optimum solution so that one can be recognized, but it does not directly
show how to choose the filter coefficients. If the eight extremal frequencies were

6 = N - !
2

N = 13 A (f l = x a k cos (2rrkfl

I k = O

8 Extremal frequenc~es

i

3

FIGURE 3.25. Frequency response for length-13 filter.

3.3 Chebyshev Approximation 89

known, the impulse-response coefficients could be found easily by solving an
interpolation problem by the frequency-sampling techniques in Section 3.1. In
other words, if the extremal frequencies were used in the frequency-sampling
design with desired values of 1.0 f 6, for the pass-band frequencies and + 6, for
the stop-band extremal frequencies, the impulse response of the optimum
Chebyshev approximation filter would be obtained.

The problem of designing the filter has been reduced to the problem of
finding the extremal frequencies. The Remes exchange algorithm".18 has
proved to be valuable in finding these extremal frequencies.

3.3.3 The Remes Exchange Algorithm

- The Remes exchange algorithm makes use of the fact that it is always possible to
make the error function

take on the values f 6 for any given set of r + 1 frequency points f,, m = 1,. . . ,
r + l.17918 (TO simplify notation, we assume a unit weight function, but these
results apply to a general positive weight function.) In other words, the set of
linear equations

has a unique solution for the coefficients c,, k = 0,. . . , r - 1, and the amplitude.
6, of the oscillation on the given frequencies f,. In the application of the Remes
exchange algorithm developed by Parks and M ~ C l e l l a n , ~ ~ the set 9 of
frequencies over which the approximation is made is an equally spaced grid with
the number of frequency points approximately equal to 10 times the filter length.
If 9 consisted only of the r + 1 frequencies f, in (3.49), then the approximation
problem would be solved in one step. The coefficients ck in (3.49) would be the
coefficients of the best approximation, and the maximum error on 9 would be
161. This conclusion follows directly from the alternation theorem, where f, are
the extremal frequencies and 6 is the amplitude of the oscillation. The error on
one extremal frequency would be 6, and the error on the next extremal frequency
would be -6. Furthermore, when 9 contains only r + 1 frequencies,

r - 1

max DCf) - ck cos(2nkf) = 161.
fd I k = O

These are the conditions for f, to be extremal frequencies.
In most practical applications 9 contains more than r + 1 frequencies. The

problem in these cases is to find which subset of r + 1 frequencies is the set of

90 Design o f Linear-Phase Finite Impulse-Response

extremal frequencies. The Remes exchange algorithm begins with a trial set of
frequencies, as shown in Fig. 3.26, and systematically exchanges frequencies
until the set of extremal frequencies is found. The new frequencies used in the
next trial set are those r + 1 frequencies where the weighted error E(f) has the
largest magni t~de .~ ' Given a trial set of frequencies

the Remes exchange algorithm consists of the following four basic
computations:

1. Solve the linear equations in (3.49). This solution has an error that
oscillates with amplitude 6, on the trial set of frequencies for the kth
iteration.

2. Interpolate to find the frequency response on the entire grid of
frequencies.

3. Search over the entire grid of frequencies to see if (and where) the
magnitude of the error in (3.48) is larger than the magnitude of 6, found in
step 1.

4. If the maximum value of the error magnitude found in step 3 equals 6,,
stop. If not, take the r + 1 frequencies where the error attains its maximum
magnitude as the new trial set of extremal frequencies and go to step 1.

Remes exchange

6k increases on each iteration. The iteration stops when 6 k ~ t 0 p ~ increasing.
At this point, 6k = yX IE(f) I and T contains the r + llextremal frequencies.

FIGURE 3.26. Block diagram for Remes exchange.

Trial set [f l , . . . , f r + l) = T

Make error E (f) oscillate
on T with amplitude 6k

No,
7

= max ,- lE(f)l and
T contains the extremal

frequencies

l
Take frequencies with r + 1 largest . values of ~ E (f l I on .F as new set 1

3.3 Chebyshev Approximation 91

It is often easier to think of the approximation problem in terms of
polynomials. The frequency-domain approximation problem and the poly-
nomial problem can be shown to be equivalent by using the change of variables

cos - '(x)
I = 2 .

With this change of variable, (3.44) becomes, with QCf) = 1,

The function cos(k cos-'(x)) is indeed a p ~ l y n o r n i a l . ' ~ ~ ' ~ The Chebyshev
polynomials Ck(x) have the form

Ck(x) = cos(k cos- '(x)) (3.55)

and are also used in Section 7.2.3.
The following simple example of the Remes exchange, with a first-order

polynomial as the approximating function, illustrates the important features of
this technique. For a more detailed description of the Remes exchange
algorithm, see references 17 and 18.

Example 3.13. Remes Exchange
The problem here is to choose the two coefficients do and dl to minimize the

Chebyshev error

max IxZ - (do + dlx)l.
x s [O , l I

In this problem a parabola is approximated by a straight line.
Since two functions (the constant 1 and the function x) are being used in this

approximation problem, there will be three extremal points. The trial set of
extremal points is denoted by 7; as in Fig. 3.27.

The first, arbitrarily chosen, trial set is To = [0.25,0.5,1.0]. To make the error

92 Design of Linear-Phase Finite Impulse-Response

oscillate on these three points, we must solve the three linear equations

for 6 and evaluate the error

for all x E [0, 11 to see if there are any points where the error has a magnitude
larger than 161.

For this trial set of points the matrix version of the linear equations in (3.56) is

The solution to these equations gives 60 = 0.0625 and an error function shown
in Fig. 3.27. Since the maximum value of the error on the interval [O,l] is 0.3125,
this trial set is not the extremal set (the error does not achieve its maximum
magnitude on the trial set To).

The next trial set T, is made up of those three points in [O,l] where the error
Eo(x) achieves its maximum magnitude. Thus,

Again, the error is made to oscillate on this trial set by solving the linear
equations

The solution to these equations gives 6, = 0.1171875 and an error function,
shown in Fig. 3.27, with a maximum magnitude of 0.1328125. Since this
maximum error is greater than 61, the trial set of points T, is not the extremal
set. As shown in Fig. 3.27, the maximum error magnitude occurs at 0.0,0.5, and
1.0. Thus, the next trial set is

The error is made to oscillate on this new trial set of points by solving the linear
equations

3.3 Chebyshev Approximation 93

Choose do, d l to minimize x , m [~ ~ l l (D (x) - (d o + d l x) l
D (x) = x 2 .

FIGURE 3.27. Example of Remes exchange.

This time 6, = 0.125, and the maximum error is also equal to 0.125, as shown
in Fig. 3.27. Thus, T, is the extremal point set because the error alternates in sign
on these three points and achieves its maximum magnitude on each of these
three points.

Example 3.13 illustrates the principal features of the Remes exchange. The
error is made to oscillate on a trial set of points. New points where the error is
larger than the amplitude of the oscillation are included (exchanged). Then the
error is again forced to oscillate on this new set with a larger amplitude of
oscillation. The amplitude of the oscillation, 6, increases at each iteration until it
is equal to the maximum of the error over the entire interval of interest. At thls
point in the iterative algorithm, the points on which the error oscillates are the
extremal points.

94 Design of Linear-Phase Finite Impulse-Response

After we find the extremal points f,, we can find the coefficients ck in the
approximation

by solving an interpolation problem of fitting the function A (f) in (3.61) to the r
known values. This procedure amounts to solving the following set of linear
equations:

After we find ck from (3.62), we easily calculate the impulse response values from
Table 3.1.

The block diagram in Fig. 3.26 shows the Remes exchange technique used to
design FIR digital filters. This figure is taken from reference 19 where the details
of the implementation may be found. The FORTRAN program that implements
the algorithm in Fig. 3.26 may be found in Programs for Digital Signal
~ r o c e s s i n ~ . ~ A listing of a slightly modified version of this program is included in
the appendix as Program 6. For a given set of filter specifications, the program
formulates an equivalent approximation problem, which uses a weighted
combination of cosines, as in (3 .44 , in a Chebyshev approximation problem.
The Remes exchange is then used to find the extremal frequencies. When the
extremal frequencies are found, the impulse response is found from the
frequency response.

If a filter with a length of several hundred coefficients is needed, some
modifications of Program 6 are necessary. Usually numerical problems will first
occur in the interpolation step (step 2 in Section 3.3.3). These problems are
especially likely to occur with very narrow pass bands and large transition
bands. B ~ n z a n i g o ~ ~ has developed an algorithm that can design filters with
lengths in the thousands. The recent work of Ebert and H e ~ t e ~ ~ should be
valuable, especially when designing long filters. They have described several
improvements to Program 6 that significantly reduce computing time.

3.3.4 Guidelines f o r Using t h e Parks-McClellan Algori thm

Although the filters that are designed by using the Parks-McClellan algorithm
with the Remes exchange are indeed optimum in the sense that the maximum
weighted error is minimized on the specified compact set of the frequency axis,
they may not possess all of the characteristics desired. There are certain basic
limitations to the performance of any of the four different types of linear-phase
FIR filters, as described in Section 2.2.1. Complicated relations exist between the
various parameters involved in the filter specification, such as the band-edge
frequencies, the attenuations in the various bands, and the filter length. This

3.3 Chebyshev Approximation 95

section describes the characteristics of typical low-pass filters, using examples
and empirical formulas relating the various parameters. The discussion is then
extended from this two-band case (one pass band and one stop band) to the
bandpass case with three bands.

Program 6 was used to calculate all of the examples in this section. SIG, the
signal processing package developed by Lawrence Livermore Laboratory,12
was used to draw the plots.

Example 3.14. Length-21 Low-pass Filter
In this design of a length-21 low-pass filter, all band-edge frequencies are

given in fractions of the sampling frequency. A large pass band was used, with a
frequency range from 0 to 0.33. The stop band was specified to begin at 0.37, and
the errors in the pass band were given the same weight as errors in the stop band.

After the filter is designed, a summary of the resulting filter parameters is
printed out, as shown in Fig. 3.28.

For this length-21 filter the amplitude function A (o) is the sum of 11 cosine
terms, and, according to the theory described in Section 3.3.1, the weighted error
should have at least 12 extremal frequencies. The magnitude response in Fig.
3.29 exhibits these 12 extremal frequencies. The 12 points where the error
achieves its maximum magnitude are circled in the figure. Notice that the two
band edges 0.33 and 0.37 are extremal frequencies. This must always be the
case.33 In this example f = 0.0 and f = 0.5 are extremal frequencies; One of
these two (either 0.0 or 0.5) must be always an extremal frequency, but it is not
necessary that both be extremal f r e q ~ e n c i e s . ~ ~

.
f i n i t e i m p u l s e r e s p o n s e (f i r)

l i n e a r p h a s e d i g i t a l f i l t e r d e s i g n
r e m e z e x c h a n g e a l g o r i t h m

b a n d p a s s f i l t e r

f i l t e r l e n g t h = 2 1

* * * * * i m p u l s e r e s p o n s e * * * * *
h (1) = 0 . 1 8 2 5 5 4 3 9 e - 0 1 = h (2 1)
h (2) = 0 . 5 5 1 3 6 7 5 5 e - 0 1 = h (2 0)
h (3) = - 0 . 4 0 9 1 0 7 2 8 e - 0 1 = h (1 9)
h (4) = 0 . 1 4 9 3 0 8 5 5 e - 0 1 = h (1 8)
h (5) = 0 . 2 7 5 6 8 5 8 4 e - 0 1 = h (1 7)
h (6) = - 0 . 5 9 4 0 7 7 9 7 e - 0 1 = h (1 6)
h (7) = 0 . 4 4 8 4 1 8 4 1 e - 0 1 = h (1 5)
h (8) = 0 . 3 1 9 0 2 6 6 0 e - 0 1 = h (1 4)
h (9) = -0 .14972545e+OO = h (1 3)
h (1 0) = 0.25687239e+OO = h (1 2)
h (l 1) = 0.69994062e+OO = h (11)

b a n d 1 b a n d 2
l o w e r b a n d e d g e 0 . 0 . 3 7 0 0 0 0 0
u p p e r b a n d e d g e 0 . 3 3 0 0 0 0 0 0 . 5 0 0 0 0 0 0
d e s i r e d v a l u e 1 . 0 0 0 0 0 0 0 0 .
w e i g h t i n g 1 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0
d e v i a t i o n 0 . 0 9 8 8 6 9 7 0 . 0 9 8 8 6 9 7
d e v i a t i o n i n db 0 . 8 1 8 9 2 3 8 - 2 0 . 0 9 8 7 3 2 0

FIGURE 3.28. Filter parameters for length-21 low pass.

96 Design of Linear-Phase Finite Impulse-Response

F r e q u e n c y

FIGURE 3.29. Magnitude response for length-21 low pass.

The unit-sample response for this example is shown in Fig. 3.30. This is a type
1 filter with an odd length and a positive symmetry. The frequency response is
not forced to be zero at either f = 0.0 or at f = 0.5.

3.3.5 Design Formulas

For a low-pass filter the following five parameters are of interest:

N Filter length.
f, The edge of the pass band specified as a fraction of the sampling frequency.
f, The edge of the stop band specified as a fraction of the sampling frequency.
b , The deviation from unity in the pass band.
6 , The deviation from zero in the stop band.

3.3 Chebyshev Approximation 97

T i m e

FIGURE 3.30. Unit-sample response for length-21 low pass.

KaiserL9 has developed an empirical formula relating these parameters, using
Af =f, - f, for the relative or normalized transition width.

When 6, = a,, (3.63) simplifies to

where the stop-band attenuation in decibels is dB = -20 logLo6,.
Formula (3.63) gives a good initial value for the filter length N in most cases

when the bandwidth is neither extremely wide nor extremely narrow. During the

98 Design of Linear-Phase Finite Impulse-Response

design of a very narrow pass band, the stop-band behavior governs the filter
length (most of the frequency characteristic is stop band). Another empirical
formula applies:

and, as before, dB = -20 logloS2.
During the design of notch filters (or a low-pass filter with a very wide pass

band), the pass-band ripple governs the filter length, and the empirical formula
for filter length is

Formulas (3.63), (3.65), and (3.66) are easy to remember, and they provide a
reasonable estimate for the filter length N. However, if a programmable
calculator or a computer is available for estimating N, then the more accurate
formulas provided in references 1 and 19 should be used.

Example 3.15. Length-20 Low-pass Filter
In this design of a length-20 low-pass filter, all band-edge frequencies are

again given in fractions of the sampling frequency. The same band-edge
frequencies as in Example 3.14 were used. The errors in the pass band were given
the same weight as the errors in the stop band.

..
f i n i t e i m p u l s e r e s p o n s e (f i r)

l i n e a r p h a s e d i g i t a l f i l t e r d e s i g n
remez e x c h a n g e a l g o r i t h m

b a n d p a s s f i l t e r

f i l t e r l e n g t h = 20

* * * * * i m p u l s e r e s p o n s e *****
h (1) = 0.48411224e-01 = h (20)
h (2) = 0.13537414e-01 = h (1 9)
h (3) = -0.39344054e-01 = h (1 8)
h (4) = 0.53151824e-01 = h (1 7)
h (5) = -0.31608246e-01 = h (1 6)
h (6) = -0.25162734e-01 = h (1 5)
h (7) = 0.83330631e-01 = h (1 4)
h (8) = -0.86372212e-01 = h (1 3)
h (9) = -0.34074463e-01 = h (1 2)
h (1 0) = 0.56718868e+00 = h (11)

b a n d 1 b a n d 2
l o w e r b a n d e d g e 0 . 0 .3700000
u p p e r b a n d e d g e 0.3300000 0.5000000
d e s i r e d v a l u e 1 . O O O O O O O 0 .
w e i g h t i n g 1 .0000000 1 . O O O O O O O
d e v i a t i o n 0 .0981161 0 .0981161
d e v i a t i o n i n db 0.8129656 -20.1651917

FIGURE 3.31. Length-20 low pass, Example 3.15.

3.3 Chebyshev Approximation 99

A summary of the resulting filter parameters is shown in Fig. 3.31. The
resulting error of 0.983 was slightly less than the error with the length-21 filter of
Example 3.14. Even though fewer cosine terms are used for this length-20 filter
(10 are used as shown in Table 3.1), the weighting term preceding the sum gives
an extra stop-band zero. In Fig. 3.32 the filter has the necessary 11 extremal
frequencies and the zero at f = 0.5 that always results with this type 2 filter (even
length and positive symmetry). Both this filter and that in Example 3.14 have
three stop-band zeros and eight extremal frequencies in the pass band. This
example shows that a filter that is shorter by one coefficient may have a better
response.

The impulse response, shown in Fig. 3.33, has two middle samples with the
same value. That always happens with a type 2 filter because there is no central
Sample. A delay of 9.5 samples rather than 10.0 in Example 3.14, occurs with this
filter. The half-sample delay for even-length filters must be taken into account
when using this filter in a system.

F r e q u e n c y

FIGURE 3.32. Magnitude response for length-20 low pass.

100 Design of Linear-Phase Finite Impulse-Response

- 0 . 1 1 , L
6 5 16 15

Time

FIGURE 3.33. Unit-sample response for length-20 low pass.

Example 3.16. Low-pass Filter with Echoes
The low-pass filter with parameters shown in Fig. 3.34 and unit-sample

response shown in Fig. 3.35 indicate the possibility of echoes in the pulse
response of the filter. This filter has a sharp cutoff (a narrow transition band) and
a large amplitude ripple in the pass band. As shown in reference 16, the large
pass-band ripple results in side lobes or echoes in the impulse response. The
amplitude of these echoes is directly proportional to the amplitude of the pass-
band ripple. For this example the echoes are located at 2 samples and at 52
samples after the beginning of the impulse response. These echoes can be
eliminated by redesigning the filter with a wider transition band and, therefore, a
smaller pass-band ripple (assuming that the same 4 0 dB of attenuation is needed
in the stop band). However, if a transition band as narrow as this one is needed,
then the unique best Chebyshev approximation must have echoes in the impulse
response. Filters designed by windowing methods usually do not have such large
echoes. Most windows are small near the ends, thus attenuating the impulse

3 . 3 Chebyshev Approximation 101

f i n i t e i m p u l s e r e s p o n s e (f i r)
l i n e a r p h a s e d i g i t a l f i l t e r d e s i g n

r e m e z e x c h a n g e a l g o r i t h m
b a n d p a s s f i l t e r

f i l t e r l e n g t h = 5 5

l o w e r b a n d e d g e
u p p e r b a n d edge
desired v a l u e
w e i g h t i n g
d e v i a t i o n
d e v i a t i o n i n db

* * i m p u l s e r e s p o n s e * * * * *
= - 0 . 9 7 7 5 9 6 5 5 e - 0 2 = h (5 5)
= 0 . 2 4 7 9 2 0 7 1 e - 0 1 = h (5 4)
= 0 . 6 5 4 7 7 3 2 7 e - 0 1 = h (5 3)
= 0 . 2 3 8 2 0 4 9 5 e - 0 1 = h (5 2)
= - 0 . 2 1 1 4 7 8 8 4 e - 0 1 = h (5 1)
= 0 . 8 9 2 9 4 0 0 7 e - 0 2 = h (5 0)
= 0 . 9 9 0 8 3 0 7 3 e - 0 2 = h (4 9)
= - 0 . 1 7 1 8 9 4 4 9 e - 0 1 = h (4 8)
= 0 . 8 6 8 5 6 7 6 4 e - 0 2 = h (4 7)
= 0 . 7 9 5 0 6 6 0 8 e - 0 2 = h (4 6)
= - 0 . 1 7 9 6 9 9 0 4 e - 0 1 = h (4 5)
= 0 . 1 1 3 2 4 0 5 0 e - 0 1 = h (4 4)
= 0 . 7 4 1 5 4 0 6 4 e - 0 2 = h (43)
= - 0 . 2 1 1 4 0 9 7 0 e - 0 1 = h (4 2)
= 0 . 1 5 4 7 8 0 4 8 e - 0 1 = h (4 1)
= 0 . 7 1 8 0 4 9 6 6 e - 0 2 = h (4 0)
= - 0 . 2 6 7 9 4 9 2 3 e - 0 1 = h (3 9)
= 0 . 2 2 2 0 9 0 1 3 e - 0 1 = h (3 8)
= 0 . 7 2 4 5 5 1 4 1 e - 0 2 = h (3 7)
= - 0 . 3 6 6 3 6 7 2 1 e - 0 1 = h (3 6)
= 0 . 3 4 4 4 2 5 2 2 e - 0 1 = h (3 5)
= 0 .73146555e-02 = h (3 4)
= - 0 . 5 7 8 4 8 4 7 6 e - 0 1 = h (3 3)
= 0 . 6 4 4 8 5 0 2 8 e - 0 1 = h (3 2)
= 0 . 7 3 6 8 8 9 3 4 e - 0 2 = h (3 1)
= - 0 . 1 4 1 1 4 8 9 4 e + 0 0 = h (3 0)
= 0 . 2 7 1 7 7 6 8 0 e + 0 0 = h (2 9)
= 0 . 6 7 4 0 6 1 1 2 e + 0 0 = h (2 8)

b a n d 1 b a n d 2
0 . 0 . 3 5 0 0 0 0 0
0 . 3 3 0 0 0 0 0 0 . 5 0 0 0 0 0 0
1 . 0 0 0 0 0 0 0 0 .
1 . 0 0 0 0 0 0 0 2 0 . 0 0 0 0 0 0 0
0 . 1 8 6 3 6 3 4 0 . 0 0 9 3 1 8 2
1 . 4 8 4 3 5 4 3 - 4 0 . 6 1 3 3 8 4 2

FIGURE 3.34 . Parameters for low-pass with echoes.

response at the ends. A filter designed with windowing cannot, for the same
stop-band attenuation and the same transition width, have any smaller pass-
band error than this filter. The shape of the pass band will be different, and the
maximum deviation from unity will be larger than for the unique optimum filter
unless the window design is the best Chebyshev approximation with the
required number of extremal frequencies.

Example 3.17. A Length-21 Bandpass Filter
In this example a length-21 filter is designed with three bands: one pass band

ahd two stop bands. The errors in all three bands are weighted in the same way,
as shown in Fig. 3.36. The two transition bands for this bandpass filter have the
same width, 0.04. This width is identical to that of the low-pass filters in
Examples 3.14 and 3.15. The error here is only slightly larger than in the low-

102 Design of Linear-Phase Finite Impulse-Response

FIGURE 3.35. Unit-sample response for filter with echoes.

pass case. The magnitude response in Fig. 3.37 shows that the error has 12
extremal frequencies as required. Actually, the alternation theorem states that
the length-21 filter must have at least 12 extremal frequencies. Reference 19
shows that it is possible to have more than 12.

This filter behaves as expected. However, the frequency response has only
seven places, excluding f = 0.0 and f = 0.5, where the derivative is zero. It is
possible to have a zero derivative at nine frequencies. This zero derivative and
resulting local maximum (or minimum) may occur in the transition band and
lead to unexpected results, as illustrated in Example 3.18.

Example 3.18. A Bandpass Filter with Transition Band Peak
We obtained this example by slightly modifying the specifications for the

length-21 bandpass filter in Example 3.17. The first transition band was widened
from 0.04 to 0.17, and the second transition was reduced from 0.04 to 0.03. The
resulting filter parameters (Fig. 3.38) indicate that a reasonable design has been
obtained. The error is slightly larger than with both transition bands equal to

3.3 Chebyshev Approximation 103

f i n i t e i m p u l s e r e s p o n s e (f i r)
l i n e a r p h a s e d i g i t a l f i l t e r d e s i g n

r e m e z e x c h a n g e a l g o r i t h m
b a n d p a s s f i l t e r

f i l t e r l e n g t h = 2 1

***** i m p u l s e r e s p o n s e * * * * *
h (1) = 0 . 4 6 6 7 7 5 8 0 e - 0 2 = h (2 1)
h (2) = 0 . 9 6 7 5 9 4 7 0 e - 0 2 = h (2 0)
h (3) = - 0 . 9 0 1 8 1 3 2 8 e - 0 1 = h (1 9)
h (4) = - 0 . 2 5 7 5 0 4 8 6 e - 0 1 = h (1 8)
h (5) = 0 . 4 5 5 9 0 4 4 2 e - 0 1 = h (1 7)
h (6) = - 0 . 1 0 3 0 8 8 0 6 e - 0 1 = h (1 6)
h (7) = 0 . 1 1 0 3 8 4 7 9 e + 0 0 = h (1 5)
h (8) = 0 . 1 2 5 9 6 3 3 2 e - 0 1 = h (1 4)
h (9) = - 0 . 2 8 5 8 9 7 1 1 e + 0 0 = h (1 3)
h (1 0) = - 0 . 1 7 3 4 3 4 7 1 e - 0 1 = h (1 2)
h (l 1) = 0 . 3 8 5 7 7 7 2 4 e + 0 0 = h (1 1)

b a n d 1 b a n d 2
l o w e r b a n d e d g e 0 . 0 . 1 8 0 0 0 0 0
u p p e r b a n d e d g e 0 . 1 4 0 0 0 0 0 0 . 3 3 0 0 0 0 0
d e s i r e d v a l u e 0 . 1 . O O O O O O O
w e i g h t i n g 1 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0
d e v i a t i o n 0 . l o 7 3 5 4 6 0 . l o 7 3 5 4 6
d e v i a t i o n i n db - 1 9 . 3 8 3 5 8 6 9 0 . a 8 5 7 3 4 6

FIGURE 3.36. Bandpass filter parameters.

b a n d 3
0 . 3 7 0 0 0 0 0
0 . 5 0 0 0 0 0 0

0.04, but otherwise the filter seems to be a good bandpass filter. The unit-pulse
response in Fig. 3.38 gives the unique best Chebyshev approximation on the
frequency bands specified. On two transition bands there is no control of the
error. These "don't care" regions should always be checked to verify that the
frequency response has the expected monotonic behavior.

In this example, as in Example 3.16, a local maximum (or minimum) in a
transition band is possible because not all of the places where the derivative is
zero occur in the specified bands. Figure 3.39 shows that there is a local
maximum in the first transition band, which gives a filter with quite different
characteristics than expected. This phenomenon has been studied,36 and some
suggestions have been made to reduce the possibility of transition band peaks.
The method recommended in reference 36 makes use of (3.63), the formula
relating the transition width Af and the errors 6, and 6,. If there are two
transition bands, Af, and Af,, as in Example 3.18, with S, and 6, the deviations
on both sides of transition Af, and with S2 and 6, the deviations on both sides of
transition Af,, we first calculate

and

l**
f i n i t e i m p u l s e r e s p o n s e (f i r)

l i n e a r p h a s e d i g i t a l f i l t e r d e s i g n
r e m e s e x c h a n g e a l g o r i t h m

b a n d p a s s f i l t e r

f i l t e r l e n g t h = 2 1

***** i m p u l s e r e s p o n s e *****
h (1) = -0 .21529701e+00 = h (2 1)
h (2) = - 0 . 2 2 9 5 3 7 6 1 e t 0 0 = h (2 0)
h (3) = 0 .54982297e-01 = h (1 9)
h (4) = 0 .44166148e+00 = h (1 8)
h (5) = 0.69435006e+OO = h (1 7)
h (6) = 0 . 1 1 3 9 4 2 7 1 e t 0 0 = h (1 6)
h (7) = - 0 . 7 1 5 4 2 7 1 0 e t 0 0 = h (1 5)
h (8) = -0 .10141391e+01 = h(14)
h (9) = -0.71523160e+OO = h (1 3)
h (1 0) = 0.66042960e+OO = h (1 2)
h (l 1) = 0 . 1 7 3 8 1 0 1 2 e t 0 1 = h(11)

b a n d 1 b a n d 2 b a n d 3
l o w e r b a n d e d g e 0 . 0 .2500000 0 .4000000
u p p e r b a n d e d g e 0 .0800000 0 .3700000 0 . 5 0 0 0 0 0 0
d e s i r e d v a l u e 0 . 1 . O O O O O O O 0 .
w e i g h t i n g 1 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0
d e v i a t i o n 0 . I 1 0 4 3 1 3 0 - 1 1 0 4 3 1 3 0 . 1 1 0 4 3 1 3
d e v i a t i o n i n db -19 .1381569 0 .9098340 -19 .1381569

FIGURE 3.38. Parameters for transition peak example.

3.3 Chebyshev Approximation 105

One of these quantities will be larger than the other and will be the major factor
in determining filter length. If N 2 is larger than N , , as in Example 3.18, the
"modified stop-band" method3'j suggests reducing the width Af, by moving the
stop-band edge frequency closer to the pass-band edge until N , and N 2 are
approximately equal. Another approach, which does not allow exact specificat-
ion of band-edge frequencies, is to ensure that all possible zeros of the derivative
occur in the specified bands (maximal-ripple filter). Alternatively, rather than a
transition band where there is no control of the error, a band can be used with a
small weight on the error. There are other approaches that always put
constraints on all frequencies and thereby guarantee that there will be no
unexpected results in transition band^.^',^'.^^ When linear programming is used
to design the filter, an upper constraint on the response in the transition band
can easily be specified.39 When the Parks-McClellan algorithm is used for
bandpass filters, the frequency response should always be examined in the
transition bands, especially when there is a big variation in the widths of the
transition bands, as in Example 3.18.

F r e q u e n c y

FIGURE 3.39. Overall frequency response with transition peak.

106 Design of Linear-Phase Finite Impulse-Response

Summary

Filters that minimize the Chebyshev error measure necessarily have an
equiripple characteristic for the weighted error function. The unique best
Cheyshev filter must have at least one more extremal frequency (ripple) than the
number of degrees of freedom in the impulse response: N / 2 for even length N,
and (N + 1)/2 for odd N.

The Remes exchange used in the Parks-McClellan algorithm provides an
efficient method for designing Chebyshev equiripple filters. Filters can be
designed with several pass bands and stop bands with different weighting in each
band by using Program 6 in the appendix. This FORTRAN program can be
modified easily to accommodate an arbitrary desired function and an arbitrary
weight function.

This section provided several examples to illustrate special characteristics of
Chebyshev equiripple filters and to indicate possible pitfalls in designing these
filters.

3.4 DESIGN OF MAXIMALLY FLAT
(BUTTERWORTH) FILTERS

When the filter tolerance scheme is stated in terms of the maximum allowable
deviation from unity in the pass band and the maximum allowable deviation
from zero in the stop band, the optimum filter has an equiripple magnitude
characteristic (see Section 3.3). This equiripple characteristic can lead to
"echoes" in the impulse response, as shown by Example 3.16, and is thus not
always the most desirable magnitude shape. A smoother frequency magnitude
characteristic leads to an impulse response with smaller amplitudes in the tails of
the impulse response. The maximally flat, or Butterworth, FIR filter may be a
useful alternative to the equiripple designs of Section 3.3.

3.4.1 Derivation of the Maximally Flat Linear-Phase
Low-Pass Filter

The frequency response of a type 1 linear-phase filter has the form

3.4 Design of Maximally Flat utterwo worth) Filters 107

The coefficients in (3.67) are chosen to satisfy the following conditions:

where k is a constant chosen to give the desired amount of flatness at f = 0 and
f = 0.5.

With the change of variable x = cos(2nf), described in Section 3.3.3, G(f) in
(3.68) becomes

Condition (3.70) requires that P(x) have a zero of order k at x = 1, and condition
(3.71) requires that P(x) - 1 have a zero of order (N + 1)/2 - k at x = 0.
Herrmann40 has given the explicit, closed-form expression for a polynomial
satisfying these conditions:

where (k+z - l) represents the binomial coefficient.
In applications using (3.73) for a low-pass filter, the pass-band edge cannot be

specified exactly. The parameter k can be used to indirectly control the location
of the band edge. A large value of k gives a smooth frequency response at zero
frequency and gives a wide-band filter. A small value of k puts more emphasis on
smoothness at f = 0.5 and thus gives a narrower pass band. Hermann40 has
related k to the desired half-power, or cutoff, point x = x,, using

where [y] is the greatest integer less than y.
After the polynomial P(x) is calculated, the impulse response may be

calculated by interpolating GCf) to the frequency response P(cos(2nf)) in a
manner similar .to that used in the Parks-McClellan implementation of the
Remes exchange. A program, written by J. F. Kaiser, that implements the
foregoing procedure may be found in reference 9.

108 Design of Linear-Phase Finite Impulse-Response

3.4.2 Smooth Pass Bands and Equiripple Stop Bands

Recently, a new class of FIR linear-phase bandpass filters with smooth pass
bands has been de~cribed.~' These filters have all their zeros on the unit circle
with an equiripple stop-band behavior. The design of these filters is quite fast
since, as in the case of the maximally flat filters, there is a closed-form expression
for the response. These formulas are based on Zolatarev polynomials and are
described in detail in reference 41. The Chebyshev polynomials described in
Section 3.3.2 are a special case of the Zolotarev polynomials. These Zolotarev
filters combine the smooth pass band of the maximally flat filters with the
equiripple response of the Chebyshev filters. They are the FIR version of
Chebyshev type 2 or inverse Chebyshev IIR filters described in Chapter 7.

Summary

This section described an alternative to the equiripple frequency characteristic.
The maximally flat designs do not have as small deviations from the ideal
response of unity in the pass band and zero in the stop band as do the
Chebyshev designs, but they do have a smoother frequency response and an
impulse response that has smaller amplitude tails than the Chebyshev designs.
There are FIR filters that combine the Chebyshev-type equiripple stop band
with a smooth Butterworth-type pass band based on Zolotarev polynomials.

REFERENCES

L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1975.
A. V. Oppenheim and R. W. Schafter, Digital Signal Processing, Englewood Cliffs,
NJ: Prentice-Hall, 1975.
F. J. Taylor, Digital Filter Design Handbook, New York: Dekker, 1983.
L. B. Jackson, Digital Filters and Signal Processing, Boston: Kluwer, 1986
L. R. Rabiner and C. M. Rader, eds., Digital Signal Processing, selected reprints,
New York: IEEE Press, 1972.
Digital Signal Processing 11, selected reprints, New York: IEEE Press, 1979. Edited
by the Digital Signal Processing Committee.
J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Englewood Cliffs, NJ: Prentice-Hall, 1983.
J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK Users'
Guide, Philadelphia: SIAM, 1979.
Programs for Digital Signal Processing, New York: IEEE Press, 1979.
Digital Filter Design Package, DFDP, Interactive Software for Digital Filter
Design, Version 1.02, Atlanta, GA: Atlanta Signal Processors Inc., 1984.

References 109

[11] J. O'Donnell, DISPRO 01.0 User's Manual, Digital Filter Design Software,
Wayland, MA: Signix Corp., 1983.

[12] SIC: A General Purpose Signal Processing, Analysis, and Display Program,
Livermore, CA: Lawrence Livermore Labs, 1985.

[I31 C. S. Burrus and T. W. Parks, DFTIFFT and Convolution Algorithms, New York:
Wiley-Interscience, 1985.

[14] D. F. Elliot and K. R. Rao, Fast Transforms: Algorithms, Analysis and Applications,
New York: Academic Press, 1982.

[I51 R. Bracewell, Fourier Transforms, New York: McGraw-Hill, 1975.

[I61 A. Papoulis, The Fourier Integral and Its Applications, New York: McGraw-Hill,
1962.

[I71 E. W. Cheney, Introduction to Approximation Theory, New York: McGraw-Hill,
1966.

[I81 J. R. Rice, The Approximation of Functions, Vol. 1 , Reading, MA: Addison-Wesley,
1964.

[I91 L. R. Rabiner, J. H. McClellan, and T. W. Parks, "FIR Digital Filter Design
Techniques Using Weighted Chebyshev Approximation," Proc. IEEE 63, 595-
610 (1975).

[20] M. A. Martin, Digital Filters for Data Processing, Tech. Report No. 62-SD484,
Missile and Space Division, General Electric Co., 1962.

[21] D. W. Tufts, D. W. Rorabacher, and M. E. Mosier, "Designing Simple, Effective
Digital Filters,': IEEE Trans. Audio Electroacoustics AU-18, 142-158 (1970).

[22] D. W. Tufts and J. T. Francis, "Designing Digital Low-Pass Filters-Comparison
of Some Methods and Criteria," IEEE Trans. Audio Electroacoustics AU-18,487-
494 (1970).

[23] H. D. Helms, "Digital Filters with Equiripple or Minimax Responses," IEEE
Trans. Audio Electroacoustics AU-19, 87-94 (1971). (Reprinted in reference 5).

[24] 0 . Herrmann, "Design of Nonrecursive Digital Filters with Linear Phase,"
Electronics Lett. 6, 328-329 (1970). (Reprinted in ref. 4).

[25] T. W. Parks, L. R. Rabiner, and J. H. McClellan, "On the Transition Width of
Finite Impulse-Response Digital Filters," IEEE Trans. Audio Electroacoustics AU-
21, 1-4 (1973).

[26] 0 . Herrmann and H. W. Schiissler, On the Design of Selective Nonrecursire Digital
Filters, presented at the IEEE Arden House Workshop on Digital Filtering,
January 12, 1970.

[27] E. M. Hofstetter, A. V. Oppenheim, and J. Siegel, "A New Technique for the
Design of Non-Recursive Digital Filters," in Proceedings of the Fifth Annual
Princeton Conference on Information Sciences and Systems, pp. 64-72, 1971.
(Reprinted in reference 4).

[28] E. M. Hofstetter, A. V. Oppenheim, and J. Siegel. "On Optimum Nonrecursive
Digital Filters," Proceedings of the Ninth Annual Allerton Conference on Circuit
and System Theory, pp. 789-798, 1971. 'Reprinted in Digital Signal Processing 11,
New York: IEEE Press. (1972).

[29] T. W. Parks, Extensions of Chebyshev Approximation for Finite Impulse Response
Filters, presented at the IEEE Arden House Workshop on Digital Filtering,
January 10, 1972.

11 0 Minimum-Phase and Complex Approximation

T. W. Parks and J. H. McClellan, "Chebyshev Approximation for Nonrecursive
Digital Filters with Linear Phase," lEEE Trans. Circuit Theory CT-19, 189-194
(1972).
H. S. Hersey, D. W. Tufts, and J. T. Lewis, "Interactive Minimax Design of Linear
Phase Nonrecursive Digital Filters Subject to Upper and Lower Function
Constraints," IEEE Trans. Audio Electroacoustics AU-20, 17 1 - 173 (1972).
J. H. McClellan and T. W. Parks, "A Unified Approach to the Design of Optimum
FIR Linear-Phase Digital Filters," IEEE Trans. Circuits Systems CT-20, 697-701
(1973).
J. H. McClellan, On the Design of One-Dimensional and Two-Dimensional FIR
Digital Filters, Ph.D. dissertation, Rice University, Houston, TX, 1973.
F. Bonzanigo, Private communication, ETH Zurich.
S. Ebert and U. Heute, "Accelerated Design of Linear or Minimum-Phase FIR
Filters with a Chebyshev Magnitude Response," Proc. IEE (British) 130,267-270
(1983).
L. R. Rabiner, J. F. Kaiser, and R. W. Schafer, "Some Considerations in the Design
of Multiband Finite-Impulse-Response Digital Filters," IEEE Trans. Audio
Electroacoustics ASSP-22, 462-472 (1974).
F. Grenez, Constrained Chebyshev Approximation for FIR Filters, ICASSP-83,
Boston, 1983, pp. 194-196.
M. T. McCallig and B. J. Leon, "Constrained Ripple Design of FIR Digital
Filters," IEEE Trans. Circuits Systems CAS-25, 893-902 (1978).
K. Steiglitz and T. W. Parks What Is the Filter Design Problem? Twentieth
Princeton Conference, Princeton, NJ, March 1986.
0 . Herrmann, "On the Approximation Problem in Nonrecursive Digital Filter
Design," IEEE Trans. Circuit Theory CT-18, 41 1-413 (1971).
X. Chen and T. k. Parks, "Analytic Design of Optimal FIR Smooth Passband
Filters Using Zolotarev Polynomials," IEEE Trans. Circuits Systems, November
CAS-33, 1065-1071 (1986).

Minimum-Phase and
Complex Approximation

The advantage of linear-phase filters, as discussed in Chapter 2, is that the group
delay is a constant for all frequencies. In other words, there is no delay distortion
for linear-phase filters. The problem with linear-phase filters, however, is that
this constant delay is always equal to (N - 1)/2, where N is the filter length.
When a large attenuation is required in the stop band and a sharp cutoff is
desired, N must be quite large (see Section 3.3). Thus, linear-phase filters with
large stop-band attenuation and a sharp cutoff must have a large, but constant,
delay. This large delay could be a major drawback of a filter, for it could cause
instability if the filter were inside a feedback loop in a digital control system,
difficulties in a telephone network (such as delays when using a satellite link), or
the loss of large sums of money when trying to predict cycles in the stock market.

In many applications the ideal filter would have a large stop-band at-
tenuation, a sharp cutoff, and zero phase shift (zero delay). However, such a filter
is mathematically impossible. When a filter with less delay is desired, the
minimum-phase filter is a good choice. Minimum-phase filters have all of their
zeros inside or possibly on the unit circle. A minimum-phase filter can be
obtained from a linear-phase filter by reflecting all of the zeros that are outside
the unit circle to the inside of the unit circle. In other words, those zeros located
at z = rej8(r > 1) are changed to zeros located at z = e-j8/r. The resulting
modified linear-phase filter will have minimum phase and will have the same
magnitude (except for a scale factor) as the linear-phase filter. However, the
minimum-phase filter obtained from the linear-phase filter in this way may not
have the best possible magnitude characteristic.

This chapter discusses minimum-phase filter design in detail. The basic
approach is essentially the same as in reference 1. Although other methods have
been none are clearly superior to the more direct approach of
reference 1. The optimum-magnitude characteristic for a minimum-phase filter

1 12 Minimum-Phase and Complex Approximation

is characterized in terms of a minimum-phase alternation theorem. Minimum-
phase filters with desirable magnitude characteristics are designed and com-
pared with their linear-phase counterparts in terms of delay and magnitude
characteristics.

Although the minimum-phase filter has a smaller group delay (minimum
delay), the delay is not a constant for all frequencies, as it is for linear-phase
filters. Another alternative, in addition to the linear- and minimum-phase
designs, is the direct design with a complex desired function. A direct complex
approximation is also required when the phase must be specified, as in the
design of equalizers. In this chapter the complex approximation problem is
formulated in such a way that linear programming may be used for the design.
An example with approximately constant delay, which is less than the delay
resulting from linear-phase design, is given. Complex approximation is also
applied to the design of FIR equalizers.

4.1 OPTIM UM-MAGNITUDE CHEBYSHEV DESIGN

A length-N FIR filter with unit-pulse response ho, h,, . . . , h, has a frequency
response

The squared magnitude of the frequency response in (4.1) is

where the a, coefficients depend on the unit-pulse response values, h,.
One's initial reaction to (4.2) is to try using the programs already developed

for linear-phase design to design filters with a desirable squared magnitude,
since these programs work with sums of cosines just like (4.2). A major
stumbling block in such an approach is the complicated nonlinear relationship
between the cosine coefficients (the an's) in (4.2) and the unit-pulse response of
the corresponding filter [the h,'s in (4.1)]. A simple length-2 example illustrates
this nonlinear relationship.

Example 4.1 A Length-2 Magnitude Characteristic
When N = 2, the squared magnitude of the filter's frequency response is

4.1 Optimum-Magnitude Chebyshev Design 11 3

In other words, the nonlinear relation between the h's and the a's in (4.1) and
(4.2) is, in this example,

a, = hi + h: and a, = 2hoh,. (4.6)

For longer filters the nonlinear relationships between coefficients become far
too complicated to solve easily for the h's. An alternative procedure that requires
factoring a polynomial (also a nonlinear operation) is described in Section 4.1.2.

4.1.1 Characterization of Optimum-Magnitude Filters

The optimum-magnitude response has an equiripple characteristic as outlined
in what follows. The squared magnitude response, shown in Fig. 4.1, is optimum
in the sense described in the alternation theorem for the minimum-phase case,
given next.4

Minimum-Phase Alternation Theorem
Given K = hl/h2, 6, is minimum if and only if D(f) - IH(f)l = E(f) has at
least N + 1 extremal frequencies on B, where

N is the filter length = (number of coefficients)
6, is the pass-band deviation
6, is the stop-band deviation
B, is the set of pass-band frequencies
B, is the set of stop-band frequencies

FIGURE 4.1. Optimum squared magnitude.

114 Minimum-Phase and Complex Approximation

and

This theorem can be used to identify an optimum-magnitude response. For
example, a length-7 linear-phase (type 1) filter has a frequency response

where the amplitude, as described in Section 2.2, is

The alternation theorem in Section 3.3 states that ACf) must have at least five
extremal frequencies, as shown in Fig. 4.2a. The squared magnitude of the

\ 5 extrernals

\ 6 extrernals

8 extremals

,f
0.5

FIGURE 4.2. Linear-phase versus optimum magnitude. (a) Amplitude for length-7 linear-phase
filter; (b) squared magnitude for filter in (a); and (c) optimum squared magnitude for length-7.

4.1 Optimum-Magnitude Chebyshev Design 11 5

frequency response

is shown in Fig. 4.2b. The error function E (f) described in the minimum-phase
alternation theorem has only six extremal frequencies, as indicated in the figure.
Even though this filter has an equiripple magnitude characteristic, it does not
have the best possible magnitude characteristic in the sense of the minimum-
phase alternation theorem. The best possible magnitude characteristic for a
length-7 filter would have at least eight extremals, as illustrated in Fig. 4 . 2 ~ . The
filter with this optimum magnitude would not, however, have the desirable
linear-phase characteristic. Instead it would be designed to have all of its zeros
either inside the unit circle or possibly on the unit circle-that is, to have
minimum phase.

4.1.2 Design Procedure

The design procedure described here was first proposed by Herrmann and
Schiissler' and involves factoring a polynomial. There are several other
approaches,2'3 but this procedure is easier to describe and gives filters that are as
good as those designed by other methods. The three steps required for the design
of a length-N minimum-phase filter are as follows:

1. Design a length = (2N - 1) linear-phase (type 1) filter, obtaining ACf) as a
sum of N cosines.

2. Scale the resulting filter by adding 6; so that A (f) + 6; is positive, where
6; is the stop-band error for the linear-phase filter, as shown in Fig. 4.3.

3. Factor the transfer function of the scaled filter in step 2, keeping all of the
zeros that are inside the unit circle and one each of the double zeros on the
unit circle.

These three steps are illustrated for a length-1 1 minimum-phase filter in Fig.
4.3. As described in Section 2.2.3, the linear-phase transfer function has roots
with mirror-image symmetry (see Section 2.2.3). In Fig. 4 . 3 ~ there are 20 roots,
14 of which are on the unit circle. The scaling in step 2 (see Fig. 4.3b) results in
seven double zeros on the unit circle and does not disturb the mirror-image
symmetry of the remaining six roots. Step 3 (see Fig. 4 . 3 ~) results in seven single
zeros on the unit circle and three roots inside the unit circle that shape the pass
band of this optimum-magnitude minimum-phase filter.

When the requirement for linear-phase is dropped along with the required
symmetry of the impulse response, there may be a considerable saving in filter
length for the same magnitude performance, perhaps as high as a factor of 2. The
actual saving achieved depends on the specific type of filter being designed. For
example, if the desired filter has a very narrow pass band, the linear-phase filter
designed in step 1 will have all of its 2(N - 1) zeros on the unit circle. Then the

11 6 Minimum-Phase and Complex Approximation

A(n t

(1) Design N = 21 linear phase

(2) Scale A(fl positive

(3) Factor mirror image polynomial
HI is optimum, length 11 filter

FIGURE 4.3. Design steps for optimum-magnitude, minimum-phase filter. (1) Design N = 21
linear phase. (2) Scale A 0 positive. (3) Factor mirror image polynomial. H , is optimum length-11.

scaling in step 2 will result in N - 1 double zeros on the unit circle, so step 3 will
give a filter with N - 1 single zeros on the unit circle. This optimum-magnitude
minimum-phase filter has linear phase! In this special case of a very narrow pass
band, the linear-phase filter is also an optimum-magnitude, minimum-phase
filter with no savings as a result. Any linear-phase filter with all of its zeros on
the unit circle is also an optimum-magnitude, minimum-phase filter.

4.1 Optimum-Magnitude Chebyshev Design 11 7

The other extreme is the type of filter with a very narrow stop band (e.g., a
notch filter). It is possible to reduce the length required for linear phase by more
than a factor of 2, as shown in Fig. 4.4. Figure 4 . 4 ~ illustrates a length-21, linear-
phase notch filter with a 1.2-dB pass-band ripple and a 30-dB notch with pass-
band edges a t f = 0.21 and f = 0.29. A length-9, minimum-phase, optimum-
magnitude filter was designed to have the same band edges, about the same
pass-band ripple (1.1 dB), and a 45-dB notch, as shown in Fig. 4.4b. The group
delay of the linear-phase notch filter was a constant 10 samples for all
frequencies. The group delay for the minimum-phase notch was much smaller,
varying between - 0.5 and + 2.0 samples.

The major difficulty in this method of minimum-phase filter design is in step
3, which requires factoring a polynomial whose order is twice the order of the
desired transfer function. If we use special properties of the transfer function to
be factored (e.g., that the locations of the unit circle zeros are known from the
frequency domain), it is possible to design reasonably long filters (lengths greater

I I I I I
0 0.1 0.2 0.3 0.4 0.5

Frequency

I I I I I
0 0.1 0.2 0.3 0.4 0.5

Frequency

FIGURE 4.4. Notch filter comparison. (a) Linear-phase filter, W = 21, 1.2dB passband ripple,
30dB notch, passband edges 0.21 and 0.29; and (b) optimum-magnitude, minimum-phase filter,
N = 9, 1.1 dB passband ripple, 45dB notch, passband edges 0.21 and 0.29.

0

s-
73
%
0

4
-50

D

c c M

2

-100

-150
0

1 ,

-
\

-

- ~ ~ p ~ l ~ l l ~ ~ l ' ~ ~ F ~ ~ ~
, L 1

0 0 1 0 2 0 3 0 4 0 5

02

5 01
0

4
a,
% -
3

Ea O O L -

-01

-0 2 0 0 50 100 150 200 250 300 350

FIGURE 4.5. Length-325 mmlmum-phase filter.

1 , I 1

- 1

-

-

-

-
I

-
i

i

Z
-

4.1 Optimum-Magnitude Chebyshev Design 11 9

FIGURE 4.5. (Continued)

than 300).4 For example, a length-325, minimum-phase, low-pass filter was
designed with the resulting responses shown in Fig. 4.5. Figure 4 . 5 ~ gives the
magnitude response with about 82-dB attenuation in the stop band, and Fig.
4.5b shows the impulse response. Note that it is far from having the symmetry
required for linear phase. The maximum of the impulse response occurs at
sample 9, corresponding to the low-frequency group delay shown in Fig. 4 .5~ .

The same procedure described for obtaining an equiripple minimum-phase
filter may be used to obtain a minimum-phase, Butterworth-type filter. The
squared magnitude characteristic of the minimum-phase filter will have the
maximally flat properties that the magnitude has for the linear-phase case. The
group delay characteristic of the Butterworth minimum-phase filters is smoo-
ther than that obtained for the equiripple minimum-phase filters.

Summary

Optimum-magnitude, minimum-phase filters must have an equiripple mag-
nitude characteristic, as shown by the minimum-phase alternation theorem.
Optimum-magnitude, minimum-phase filters can be designed by factoring an
appropriately scaled linear-phase prototype. Minimum-phase filters generally
have smaller group delays than linear-phase filters, except for the narrow pass-
band filters that are both linear phase and minimum phase at the same time.
Minimum-phase filters generally achieve the same magnitude specifications as
the linear-phase filters but with fewer coefficients. The computational saving

120 Minimum-Phase and Complex Approximation

may not be as great as it at first appears, since the linear-phase impulse response
has a symmetry that allows storage of only (N + 1)/2 coefficients. The possibility
of computational saving must be carefully examined for each particular
implementation.

4.2 COMPLEX APPROXIMATION

Linear-phase and minimum-phase designs give a real approximation problem.
A real-valued function of frequency f is approximated as a weighted com-
bination of real-valued functions with real coefficients. To design filters with
about the same magnitude characteristics but less delay than the linear-phase
filters, we may use a complex desired function with a desired magnitude of unity
and a desired group delay slightly less than that of the linear-phase filter with the
same length.

When the Chebyshev error is used, the resulting approximation problem
cannot be directly solved with any linear approximation scheme for real-valued
functions. Steiglitz5 has proposed a method for reformulating the complex
approximation problem to allow the approximate minimization of the mag-
nitude and phase of the error for all-pass filters. He uses linear programming for
the design. This section describes a slightly different but closely related
approach6*' that uses standard linear programming algorithms. A FORTRAN
program for complex Chebyshev design is provided in the appendix (Program
7).

Least squared approximation may be used with complex-valued desired
functions in exactly the same way as with the real-valued desired functions that
arise in the linear-phase problem (see Section 3.2). This section describes
complex LS approximation and contains an example designed with the LS
complex design program in the appendix (Program 8).

4.2.1 Complex Chebyshev Error Approximation

The frequency response for a length-N FIR filter is

where the unit-pulse response values h, are assumed to be real. In the complex
approximation problem the desired frequency response D(f) is a complex-
valued function of the frequency f. This leads to the

Chebyshev Complex Approximation Problem
Given

A compact subset B of [0, 0.51

4.2 Complex Approximation 121

A desired complex-valued function DCf)
A positive weight function WCf)

the problem is to minimize over h,

or to minimize over h,

where ECf) is the complex-valued error function.
The main difference between this problem and the linear-phase approxi-

mation problem in Section 3.3 is that the magnitude of a complex error is to be
minimized, as illustrated in Fig. 4.6, where the desired function D (f) is 1.0 in the
pass band and 0.0 in the stop band.

4.2.1.1. L inear Equation Approach
The complex approximation problem may be viewed as a nonlinear real
approximation problem, since the minimization of the magnitude of a complex
number z corresponds to the minimization of the square root of the sum of the
squares of the real and imaginary parts of z; with

z = x + jy , lzl = ,/-. (4.15)

The set of all points in the complex plane that have unit magnitude is a circle.

& 99%.

i:.:::: :::<:.
X

Im I
FIGURE 4.6. The complex approximation problem.

122 Minimum-Phase and Complex Approximation

The circle implied by (4.16) may be approximated with a unit square corre-
sponding to the equation

The original statement of the complex approximation problem required fitting
the approximating function HCf) inside the smallest, circular cross section
cylinder centered on the desired function D(f), as illustrated in Fig. 4.6. If a
cylinder with a square cross section is used, the approximation problem in (4.14)
changes, for W(f) = 1, to minimize over h,

If the imaginary part of ECf) is rewritten as

equation (4.18) can be rewritten as

minimize over h,
max {lRe(E(f))I, wwECf)e - '"'2)1}. (4.20)
f €9

From this point of view the approximations of real and imaginary parts are
special applications of the real rotation the~rem.~ . '

Real Rotation Theorem
For a complex number z = x + jy,

I z I = ,,/- = max {~e(zej~"")}.
-0.5GuGO.5

The approximations of the real and imaginary parts correspond to choosing
only the two values of u = 0.0 and u = -0.25 in the real rotation theorem, as
shown in Fig. 4.7. Streit and Nuttall7 have used more samples of u in the real
rotation theorem to design array shading functions and have shown that 8 to 16
samples of u are sufficient for their application. Equation (4.20), when viewed as
an application of the real rotation theorem, becomes

minimize over h,
max max {~~e(E(f)e-j~"")I}, (4.2 1)
f € . F U E ' Y L

where the set

4.2 Complex Approximation 123

FIGURE 4.7. Approximation of real and imaginary parts.

When E (f) is written out in terms of D(f) and H (f) , (4.21) becomes

minimize over h,

rnax max (lRe{(D(f) - "fl h,,e -) (4.23)
(€3 u t J / / n = 0

The approximation problem in (4.23) may be solved with a standard linear
programming package for solving overdetermined linear equations,' or the
improved Algorithm 635.' If there are L frequency values in the set F and two
values in the set a, as in (4.22), then there will be 2L equations in N unknowns,
as shown in Fig. 4.7. These 2L equations correspond to using a square to
approximate the circle as described in (4.17) and illustrated in Fig. 4.7. There are
complex errors that may have a magnitude as large as 1.414 times the error
minimized when the square is used to approximate the circle. As shown in Fig.
4.8, when an octagon is used to approximate the circle, the complex error
magnitude is only, at worst, 1.082 times the error minimized when the circle is
used. The octagonal approximation corresponds to using

in (4.21) and results in the 4L equations shown in Fig. 4.8.

4.2.7.2 Bandpass Design Using Complex Approximation
To illustrate the possible advantages of complex approximation, we present two
bandpass designs. Program 7 in the appendix was used to design these examples.

124 Minimum-Phase and Complex Approximation

4 L equations. N unknowns

FIGURE 4.8. Octagonal approximation to circle.

Example 4.2. Bandpass, Reduced Delay ~ i l t e r"
The filter specifications are

Filter length N = 3 1
Stop-band frequencies: band 1: [O.OO, 0.101; weight = 10.0
Pass-band frequencies: band 2: C0.15, 0.281; weight = 1.0
Stop-band frequencies: band 3: C0.33, 0.501; weight = 10.0

The desired function D (f) was

- j 2 n 1 2 ~ for f in the pass band,
for f in the stop bands.

This choice of D (f) corresponds to a desired group delay of 12 samples. For
comparison, note that a linear-phase filter with the same length has a group
delay of 15 samples. The design used a 16-sided figure to approximate the circle
and took about 20 minutes of CPU time on a VAX 750, using program 7 with
the standard linear programming package in reference 8. The resulting unit-
pulse response is shown in Fig. 4.9. The resulting frequency response is plotted in
Fig. 4.10. The pass-band deviation is 6 , = 0.075, and the stop-band deviation is
6 , = 0.0075. The pass-band group delay is between 11.08 and 13.19 samples. A

4.2 Complex Approximation 125

FIGURE 4.9. Unit pulse response of bandpass filter.

linear-phase filter with the same length and the same band-edge frequencies has
6 , = 0.11 and 6 , = 0.01 1. Thus, the complex approximation has a magnitude
characteristic about 3 dB better and a group delay about three samples less than
the linear-phase filter. Of course, the group delay is no longer a constant, as
shown in Fig. 4.10.

It is possible to derive an approximate expression for the group delay errori0

This linear expression allows additional equations to be added to the linear
programming problem and to directly weight the group delay of the filter. It is
also possible to weight the phase rather than the group delay.'' The following
example shows that with the use of delay weighting it is possible to get an
approximately constant group delay characteristic.

Example 4.3. Bandpass, Complex Appro.uimation with Delax Weightiug
The filter specifications are

Filter length N = 31
Stop-band frequencies: band 1: CO.00, 0.101; weight = 10.0
Pass-band frequencies: band 2: C0.15, 0.281; weight = 1.0
Stop-band frequencies: band 3: C0.33, 0.501; weight = 10.0
The weight on the group delay was 1.0
The desired function DCf) was

for f in the pass band,
for f in the stop bands.

126 Minimum-Phase and Complex Approximation

Bandpass. N = 31 To = 12
10 I I I I

FIGURE 4.1 0. Bandpass complex approximation.

These specifications were used in Example 4.2, but here there is an additional
weighting on the group delay from (4.25).

The resulting pass-band and stop-band errors were 0.11 and 0.01 1, which are
the same as those obtained with a linear-phase filter. The group delay in the pass
band was between 11.90 and 12.13, as shown in Fig. 4.11. This filter has about
the same magnitude as the linear-phase filter, but the approximately constant
group delay is only 12 instead of 15. The unit pulse-response of the filter is
shown in Figure 4.12.

4.2.1.3 Equalizer Design Using Complex Approximation
When an FIR filter is used to equalize or compensate an existing system or filter,
the problem is usually a complex approximation problem. A system with good
magnitude characteristics but bad group delay characteristics may be followed
by a FIR equalizer that will add a group delay characteristic that can make the
overall equalized delay close to the desired characteristic. The possibilities are
illustrated by an equalized fourth-order elliptic filter in Example 4.4.

4 . 2 Complex Approximation 127

Bandpass. N = 31 TD = 12
with weighting on group delay

10 I I I I

0 0.5

FIGURE 4.11 . Bandpass complex approximation with delay weight.

FIGURE 4.12 . Unit pulse response for delay weighting.

128 Minimum-Phase and Complex Approximation

Example 4.4. Equalization of a Fourth-Order Elliptic Filter
The fourth-order elliptic filter shown in Fig. 4.13 has a pass-band edge of

f, = 0.25 and a stop-band edge off , = 0.3 with a pass-band deviation of 0.5 dB
and a stop-band attenuation of at least 34 dB. This filter is minimum phase with
a group delay that varies by about 11 samples inthe pass band. As shown in Fig.
4.14, the group delay increases rapidly near the band edge.

A length-31 FIR equalizer was designed with the complex approximation
algorithm to obtain an equalized delay of 12.9 samples with a delay error of only
0.65 samples in the pass band. In addition to equalizing the delay, the FIR
equalizer also provides additional attenuation in the stop band of 15.6 dB, since
the pass-band and stop-band deviations of the equalizer are 0.16. The equalizer
magnitude is shown in Fig. 4.1 5. The group delay of the elliptic filter before and
after equalization is shown along with the group delay of the equalizer in Fig.
4.16.

FIGURE 4.14. Group delay of elliptic filter.

0

Zi = -20-
0)
u
3
4- .- 5 -40-
E
M 0

-60-

-80

I I I I
-

-

I I I I
0 0.5 f

FlGU RE 4.1 3. Elliptic low-pass filter.

4.2 Complex Approximation 129

FIGURE 4.1 5. Equalizer magnitude.

1 (Equalized Delay 4

FIGURE 4.16. Original and equalized delay together with the equalizer delay.

4.2.2 Complex Approximation wi th Least Squared Error

The LS approximation theory described in Section 3.2.1 for linear-phase filter
design can also be used for design of filters with arbitrary-phase characteristics.

The frequency response for a length-N FIR filter is

where we assume that the unit-pulse response values h, are real. In the complex
approximation problem the desired frequency response DCf) is a complex-
valued function of the frequency f : As in Section 3.2.1, the error is minimized
over a set of L discrete frequencies f,.

130 Minimum-Phase and Complex Approximation

Least Squared Complex Approximation Problem
Given

A set of discrete frequencies j; contained in [-0.5, 0.51
A desired complex-valued function D (, f k)

A positive weight function W (, J i)

the problem is to minimize, by choice of h,,,

We can obtain LS solution to the overdetermined set of linear equations in
(4.27) by using standard techniques." Program 8 solves the LS prob!sm by
using a subroutine from LINPACK.ll This program was used to design a
bandpass filter with the same band edges, weights, and desired delay as Example
4.2.

Euumple 4.5. Btrntlptrs.~, Rerl~rc~etl Delrrj. Fil ter, Letrst Sq~rtrred Error
The filter specifications are

Filter length N = 3 1
Stop-band frequencies: band 1: [O.OO, O.lC,]; weight = 10.0
Pass-band frequencies: band 2: C0.15, 0.281; weight = 1.0
Stop-band frequencies: band 3: C0.33, 0.501; weight = 10.0
The desired function D(, / ') was

for ,/' in the pass band,
for j' in the stop bands

This choice of D (] ') corresponds to a desired group delay of 12 samples. For
comparison, note that a linear-phase filter with the same length has a group
delay of 15 samples. The resulting frequency response is plotted in Fig. 4.17. The
use of transition bands has greatly reduced the error peaks at the band edges, as
shown in the magnitude plot of Fig. 4.17. The group delay varied between 1 1.47
samples and 13.19 samples, an error very similar to that obtained in Example
4.2. The LS design took only about one tenth of the computing time taken by the
Chebyshev design in Example 4.2.

Summary

By complex approximation theory we can design filters that have smaller group
delays than linear-phase filters and less delay distortion than minimum-phase

References 131

FIGURE 4.17. Magnitude and delay for least-squared design.

filters. Complex approximation techniques can also be used to equalize
magnitude and phase characteristics of a given system. The complex approxi-
mation problem can be solved by the Chebyshev or the LS error criterion.

The Chebyshev approximation problem was changed into a problem of
finding the approximate solution to an overdetermined set of linear equations.
This problem was in turn solved by standard linear programming techniques.

The LS approach is often appropriate when performance is measured in
terms of signal energy. Complex LS designs are done with Program 8, which
uses the same LINPACK subroutines used in Chapter 3 for linear-phase design.

REFERENCES

[I] 0 . Herrmann and H. W. Schiissler, "Design of Nonrecursive Digital Filters with
Minimum-Phase," Electronic Lett. 6, 329- 330 (1970).

[2] R. Boite and H. Leich, "A New Procedure for the Design of High Order
Minimum-Phase FIR Digital or CCD Filters," Signal Processing 3, 101-108
(198 1).

132 Minimum-Phase and Complex Approximation

G. A. Mian and A. P. Nainer, "A Fast Procedure to Design Equiripple Minimum-
phase FIR Filters," IEEE Trans. Circuits Systems 29, 327-331 (1982).
X. Chen and T. W. Parks, "Design of Optimal Minimum Phase FIR Filteers,"
Signal Processing Vol. 10, pp. 369-383 June 1986.
K. Steiglitz, "Allpass FIR Phase Equalizers," IEEE Trans. Acoust., Speech, Signal
Processing 125- 129 (1982).
K. Glashoff and K. Roleff, "A New Method for Chebyshev Approximation of
Complex-Valued Functions," Math. Comp. 36, 233-239 (1981).
R. L. Streit and A. H. Nuttall, "A General Chebyshev Complex Function
Approximation Procedure and an Application to Beamforming," J. Acoust. Soc.
Am. 72, 181-190 (1982).
J. Barrodale and C. Phillips, "Solution of an Overdetermined System of Linear
Equations in the Chebyshev Norm, Algorithm 495," ACM Trans. Math. Software
1 , 264-270 (1975).
R. L. Streit, "An Algorithm for the Solution of Systems of Complex Linear
Equations in the Lm Norm with Constraints on the Unknowns," Algorithm 635,
ACM Trans. Math. Software, 11, 242-249 (1985).
X. Chen and T. W. Parks, "Design of FIR Filters in the Complex Domain," IEEE
Trans. Acoust., Speech, Signal Processing, 35, 144-153 (1987).
J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK User's
Guide, Philadelphia: SIAM, 1979.

Implementation of Finite
Impulse-Response Filters

This chapter contains three major sections. The first section discusses represen-
tation of continuous-amplitude signal samples in terms of discrete-amplitude or
digital samples. The next section describes various ways of implementing an FIR
digital filter. These implementations are given in terms of difference equations,
block diagrams (structures), and assembly language programs. The final section
treats the finite word-length effects of coefficient quantization and quantization
noise.

When a filter is implemented with a digital computer or digital hardware, the
signal and coefficient values can no longer be represented with arbitrary
precision and unlimited amplitude. Numbers must be represented as members of
a finite set of values in a digital processor. There are several schemes for
approximately representing real numbers digitally. but principally floating-
point and fixed-point representations are used. The minimum computing time,
or the most powerful filter that can be computed in a given time, is usually best
obtained by fixed-point arithmetic. Furthermore, most signal-processing chips
use fixed-point arithmetic to efficiently use the limited silicon area available.
This book analyzes fixed-point implementations of digital filters. More complete
treatment of finite word-length effects can be found in the recently published
texts 1 and 2 and in reference 3. The presentations in this chapter and in Chapter
8 have been motivated by the work of H. W. Schiissler and by reference 4.

Finite word-length effects may be divided into two different

1. Errors in representing coefficients as finite fixed-point numbers. (The
actual filter does not have exactly the correct coefficients but is still linear.)

2. Errors due to the finite-precision arithmetic operations of addition,
multiplication, and storage. (These errors make the digital filter a
nonlinear system.)

134 Implementation of Finite Impulse-Response Filters

These two types of finite word-length errors require very different analysis
techniques. For the error in 1, linear analysis can be used; but for the errors in 2,
nonlinear analysis methods must be used.

The discussion of quantization errors begins with an analysis of the
conversion of an analog voltage with continuous-amplitude values to a digital
representation with discrete values. The discussion on digital filter structures
relates equations for computing the filter output to structures and programs for
implementing the filter on a programmable signal processor. Nonrecursive
filters do not generally have severe quantization problems; therefore, the
discussion of nonrecursive implementations in this chapter is brief. Recursive
filters, however, have problems with coefficient sensitivity, quantization noise,
and quantization-induced instabilities. Chapter 8 treats these possible problems
with emphasis on second-order blocks.

5.1 DIGITAL SIGNAL REPRESENTATIONS

Digital filtering requires that signals be both discrete time and discrete
amplitude. The conversion from continuous time to discrete time is called
sampling. The discrete-time signal produced by sampling is then converted to a
discrete-amplitude signal by a process called anulog-to-digital (AID) conversion.
Analog-to-digital conversion, as described here, has nothing to do with the time
variable. A sample value, a real number that may take on a nondenumerably
infinite number of values, is approximated by or "converted to" a digital number
that can only take on one of a finite set of values.

5.1 .I. Two's Complement Arithmetic

In the basic binary number representation of the integer x,

the bits b,, m = 0,. . . , B - 1, are either 1 or 0-hence the name binary. The bits
are written b , , . . . bo, where the leftmost bit b , , is called the highest-order bit
or the most signijicant bit.

To map the infinite range of values of the real number x into a finite range, we
evaluate the value of x modulo 2'. Two's complement arithmetic is really
arithmetic modulo 2'. Any number outside of the range of 1 , . . . ,2'-' is reduced
to this range by subtracting an appropriate integer multiple of 2'. Intermediate
results in a computation may overflow, and the correct output will still be
obtained, provided that the output is within the range of 1 , . . . , 2'-'.

Negative numbers are represented as the additive inverses of the positive
numbers. For example, when 1 is added to 2' - 1, the result is 2', which is
equivalent to zero modulo 2'. Thus, 2' - 1 is identified as " - 1." In B-bit two's

5.1 Digital Signal Representations 135

complement arithmetic, the numbers up to and including 2B-1 - 1 represent
positive n~mber s . ' . ~ They all have a highest-order bit of 0. The next number,
2 ~ ~ 1 , is the most negative number in the two's complement system. The

numbers from 2B-1 up to and including 2' - 1 all have a highest-order bit of 1
and represent negative numbers. The circle of 3-bit two's complement numbers
in Fig. 5.la shows modulo-8 arithmetic. The integer representations for the
binary numbers are shown on the inside of the circle.

Figure 5.la shows that as x increases, the representation wraps around the
circle. Information is lost about the number of times that x has wrapped around
the circle. Only the 3-bit residue of x modulo 8, the relative position on the circle,
is available.

5.1.2. Fractions

For easy truncation or rounding, the usual way to describe and use fixed-point
arithmetic is with fractions. If the largest 3-bit positive number is thought of as 3,
and the most negative number as $ = - 1.000, then the product of any two
numbers is a number whose magnitude is less than or equal to 1. The highest-
order bit is called the sign bit. A real-valued voltage o, between - V and + V
volts, is represented in two's complement arithmetic by B bits with a fractional
part

000

111 0 00 1

- 1 1

Negative numbers 11 0 - 2 2 01 0 Positive numbers

- 3 3

101 - 4 01 1

100
(a)

000

111 0 001

-0.25 0.25

Negative numbers 11 0 -0.5 0.5 01 0 Positive numbers

-0.75 0.75

101 -1.0 01 1

100

(b)

FIGURE 5.1. Circles of 3-bit two's complement numbers. (a) Integers and (b) fractions.

136 Implementation of Finite Impulse- Response Filters

as the quantized value

where each of the B bits, b,, n = 0,. . . , B - 1, is either 1 or 0. Figure 5.1b shows
the fractional representations for 3-bit numbers. For example, the bit pattern
101 in Fig. 5.lb with bo = 1, b, = 0, and b, = 1 represents the number

5.1.3 Quantization Error

The approximate representation of the real number v in (5.3), [v] , , must be one
of the 28-possible values of the fraction in (5.3). The separation between adjacent
quantized values, known as the quantization step size, is

There is a nonlinear relation between v and [v l Q that depends on whether the
approximation to v is made by truncation or rounding. The relation between the
voltage v and its quantized approximation is shown in Fig. 5.2 for a 3-bit

(b)
FIGURE 5.2. Quantization with three bits. (a) Truncation and (b) rounding.

5.1 Digital Signal Representations 137

representation with V = 1, that uses both truncation (5 . 2 ~) and rounding (5.2b).
The maximum value of [v l Q is 1 - Q = 0.75, and the minimum value is - 1.0.

The periodic nature of the two's complement type of overflow behavior is
also illustrated in these figures. After the voltage v exceeds +0.75 V , it is
represented as - 1 V (see Fig. 5 . 2 ~) . The periodicity shown in Fig. 5.2
corresponds to the wraparound described in connection with Fig. 5.1.

Quantization of a signal is a memoryless nonlinear operation. The input to
the memoryless nonlinear system, shown in Fig. 5.3, is the signal voltage v, and
the output is the quantized signal [v lQ . Although the quantization process is
deterministic, the difference between v and [v l Q is usually modeled as a random
variable

n = [v l Q - v. (5.5)

The quantized signal is considered to be the true signal v with an added noise
component n, as shown in Fig. 5.3b. This quantization noise can be modeled as a
uniformly distributed random variable that is independent of the signal v when
the number of bits is reasonably large, the error is relatively small, and the signal
is changing rapidly enough from sample to ample.^,^

For truncation, the quantization error n lies between 0 and Q and is modeled
as a uniformly distributed random variable with a mean value of Q/2. For
rounding, the quantization error or noise is modeled as a uniformly distributed
random variable with zero mean. The assumed probability densities for
truncation and rounding are shown in Fig. 5.4.

The variance of the random variable n is given by

where E { x) is the expected value of x . For rounding, the noise has zero mean,
E { n) = 0, and the variance

(5.7)

FIGURE 5.3. Modeling quantization noise. (a) Nonlinear; (6) linear model.

u :

(a)

Quantizer > [uIQ

138 Implementation of Finite Impulse-Response Filters

FIGURE 5.4. Probability densities (a) Truncation and (b) rounding

Using the probability density p(u), shown in Fig. 5.4b, gives

The variance for truncation is also ~ '112 .
The errors that are made in converting a continuous-amplitude signal into a

discrete representation may be evaluated in terms of a signal-to-noise ratio
(SNR). The signal must be scaled to limit the possibility of overflow with the use
of a scale factor or gain factor G , as shown in Fig. 5.5. A small value of G will
ensure that overflow never occurs, but the SNR will be reduced because the
quantization noise level is fixed and a small value of G reduces the signal
component. If occasional overflow is allowed, then the signal component will be
larger and thus the SNR will be increased. This tradeoff between overflow and
quantization noise is always necessary when using fixed-point arithmetic.

With V = 1 in (5.3) the quantization step size, from (5.4), is

The noise variance is

FIGURE 5.5. Signal scaling.

5.1 Digital Signal Representations 139

The SNR is defined as

SNR = 10 log [E{(T2}].

Using the values in (5.10), we obtain

SNR = 10 log[E{(Gv)')] - 10 log (5.12)

= 10 log[E{(G~)'}] + 20B log 2 + 4.77. (5.13)

The SNR clearly depends on the signal statistics. A reasonable assumption,
based on the central limit theorem (CLT), is that the signal is a Gaussian
random variable5 with mean zero and variance a'. If G is chosen to be

overload will only occur 64 times in a million samples according to the Gaussian
probability law. In other words, the probability that a Gaussian random
variable falls within the 40 range5 is 0.999936. Substituting (5.14) in (5.13) gives

SNR = 10 log[&] + 6.02B + 4.77, (5.15)

which is approximately

SNR 2 6B - 7.3 dB. (5.16)

The exact value of SNR depends on the choice of G. A larger value of G would
give a larger value for SNR but would increase the probability of overflow.
Conversely, if G were reduced to a value smaller than in (5.14), the probability of
overflow would be reduced, but the SNR would also be reduced. If the signal
samples were governed by a different probability law, slightly different results
would be obtained. A good rule of thumb is to assume the SNR to be about 6
dB/bit.

Summary

This section introduced the concepts of two's complement arithmetic, fractional
representation of numbers, and quantization noise. The tradeoff between scaling
and quantization noise was discussed. The signal should be scaled to be as large
as possible consistent with the allowed frequency of overflow. In this way all
available quantization levels are used, and the ratio of signal to quantization
noise is maximized.

140 Implementation of Finite Impulse-Response Filters

5.2 EQUATIONS, STRUCTLIRES, AND PROGRAMS

After an FIR filter has been designed by the techniques in Chapters 3 and 4, the
approximation problem has been solved. The coefficients in the filter transfer
function have been calculated to meet a given specification. The second part of
digital filter design is the realization problem. The transfer function of the filter
must be "realized" as a piece of digital hardware or as a program to implement
the input/output relation implied by the filter transfer function.

For a given transfer function there are many different ways to implement or
program the digital filter. These various implementations are represented with
block diagrams and are called j l ter structures. This section describes two
different structures for FIR digital filters and relates these structures to assembly
language programs to implement the filter.

Many different factors enter into the selection of a particular structure for a
particular application. One structure may be preferred over the other because it
is easier to program for a particular computer or signal-processing chip. The
choice of structure may be made according to the regularity of the VLSI
implementation. One structure may be less sensitive to errors in coefficients. A
structure may be chosen to minimize noise introduced by quantization of the
signal.'

This section relates the filter transfer function, the equations for calculating
the output from the input, block diagrams, and programs for a digital signal-
processing chip. One of the simplest digital filters is the length-3 FIR filter with a
transfer function

The equation that provides the output is the convolution

The structure indicated by the block diagram in Fig. 5.6 illustrates the direct
calculation of (5.18) and is called the direct structure.

The boxes labeled z- ' in Fig. 5.6 represent unit sample delays. The value
x(n - 1) is a delayed version of x(n). If the filter were implemented with a tapped
delay line, the z- ' would correspond to a physical delay element. However,
when a digital computer program is written to implement (5.18), the boxes

FlGU R E 5.6. Direct nonrecursive structure.

5.2 Equations. Structures, and Programs 141

N E X T IN X N , A D C
L T X N 2
M P Y H 2
P A C
LT. XN1
DMOV X N 1
M P Y H 1
APAC
L T X N
DMOV X N
M P Y H O
A P A C
S A C H YN, 1
O U T YN,DAC
C A L L W A I T
B N E X T

Read input x(n) from A I D convertar
Load temporary register w i t h x(n-2)
Multiply x(n-2) by h2
Load h x(n-2) into accumulator
Load tgmporary register w i t h x(n-1)
x(n-1) moved to location X N 2
Multiply x(n-1) by h l
h x(n-1) added to accumulator dad temporary register w i t h x(n)
x(n) moved to location XN1
Multiply x(n) by h o
h x(n) added to accumulator
Sfore contents of accumulator in YN
Put out y(n) to D I A convertlr
Wait for next input
G o back and get next input

FIGURE 5.7. Assembly code for direct structure.

labeled z-' correspond to storage of variables rather than any delay. This is
illustrated in Fig. 5.7, where assembly language instructions for the TMS32010
signal-processing chip are shown. (See reference 6 for a detailed description of
the instructions.) The program assumes that the present input x(n) = XN and
the two most recent inputs x(n - 1) = XN 1 and x(n - 2) = XN2 are stored in
memory.

The blocks in Fig. 5.6 labeled z- ' correspond to the DMOV XN1 and
DMOV XN instructions, which shift the data after it has been used. The code in
Fig. 5.7 is presented to explain how to implement the direct structure. A shorter
(and faster) program can be written by using a special instruction (LTD), which
performs the operations of the three instructions APAC, LT, and DMOV. The
LTD instruction is used in the design example at the end of this chapter.

Another structure, called the transpose structure because the matrix form is
the transpose of that in Fig. 5.7,' implements exactly the same input/output
relation (5.18). A block diagram of the transpose structure is shown in Fig. 5.8.
The structure in Fig. 5.8 leads to a very different program for computing the
filter output. Assembly code corresponding to the transpose structure is shown
for the TMS32010 in Fig. 5.9. The delay blocks in Fig. 5.8 correspond to the
instructions SACH Z1 and SACH 22 in Fig. 5.9. The programs for the direct
and transpose structures each have the same number of instructions and take
the same amount of time to run. However, the direct structure can better take

FIGURE 5.8. Transpose nonrecursive structure.

142 Implementation of Finite Impulse-Response Filters

NEXT IN XN,ADC
LT XN
MPY HO
LAC 21.15
APAC
SACH YN, I
MPY HI
LAC 22,15
APAC
SACH Zl,l
MPY HZ
PAC
SACH 2 2.1
OUT YN. DAC
CALL WAIT
B NEXT

Read xtn) from AID converter
Load temporary register with x(n)
M u l t i p l ~ x(n) by h
Load rl into high 8ccumulator
(hox(n) + rl) now in the accumulator
(h x(n) + r1) stored in YN
Muytiply x(n) by h
Load z2 into high accumulator
(hlx(n) + r2) now in the accumulator
(h xtn) + 22) stored ~n 21
~ u 1 t i p l y x(n) by h 2
h2x(n) now in the accumulator
h x(n) stored in 22
06tput to D/A converter
Wait for next input
Go back and get next input

FIGURE 5.9. Assembly code for transpose structure.

advantage of the special LTD instruction and has less quantization noise; it is
thus preferred for FIR filtering.

Summary

The way that a digital filter computes its output can be described with difference
equations, block diagrams describing a structure for a discrete-time system, or
computer programs. This section related these three representations and
described the direct and transpose nonrecursive structures for FIR filters.

5.3 FINITE WORD-LENGTH EFFECTS IN
FILTER lM PLEM ENTATION

The direct and transpose structures described in Section 5.2 are nonrecursive
implementations of an FIR filter. This section discusses the two categories of
finite word-length effects in nonrecursive filters. First, the errors introduced by
quantization of the filter coefficients are analyzed as the addition of an error
system to the ideal system with unquantized coefficients. Scaling to avoid
overflow is then discussed and related to the problem of maximizing the ratio of
signal to quantization noise at the output of the filter.

5.3.1 Coefficient Quantization

The coefficients in the nonrecursive filter must be quantized to B, bits. Instead of
implementing (5.18), the filter actually implements

where [h(m)lQ represents quantized filter coefficients.

5.3 Finite Word-Length Effects in Filter Implementation 143

The frequency response with quantized coefficients E?(f) may be viewed as
the sum of the ideal (unquantized) response and the frequency response of an
error system He(f).

The maximum value of the response of the error system is bounded by the
inequality

When the coefficients are rounded to B1 bits,

The addition of the error system may limit the attenuation in the stop band, for
example. In other words, the error system may allow additional signal
transmission in the desired stop band. From (5.23) we find the maximum
possible stop-band transmission, in dB, to be bounded by

Since 20 1oglo(2) E 6, this bound simplifies to

20 logl0N + 20 10g,,(2-~~) = 20 logl0N - 6B1 dB, (5.25)

giving the bound

20 log,,lH,(f)J < 20 logl0N - 6Bl dB, (5.26)

where Bl is the number of bits used to represent the filter coefficients in the
length-N filter. For example, with 16-bit coefficients in a length-100 filter
(N = 100, B, = 16), (5.26) shows that He(f) may be as large as - 56 dB.

The bound in (5.26) is very conservative, and in most cases one can get by
with fewer bits if an optimization procedure is used to pick the best quantized
coefficients rather than simply rounding the coefficients determined from a
program that assumes no coefficient Generally, with 16-bit coefficients
and short filters, the rounded coefficients will be adequate. However, when very
few bits are used for filter coefficients, then we can obtain significant improve-
ment over the rounded values by using an optimization program.'

1 # Implementation of Finite Impulse-Response Filters

5.3.2 Scaling and Overflow

The direct implementation of a length-3 nonrecursive filter is shown in Fig. 5.10.
This figure has the same structure as Fig. 5.6; however, it has been redrawn to
emphasize the single output accumulator. The output of the filter at time n is
given by

y(n) = C h(m)x(n - m).
m = O

When the input x(n) and the unit-pulse response h(n) have magnitudes less than
or equal to unity, the magnitude of y(n) in (5.27) is bounded by

For an input with magnitude at most unity, the largest possible value of the
output at time n occurs when

In the worst case

This equation is known as the 1 , norm of h:

If the unit-pulse response samples are all divided by the scale factor

FIGURE 5.10. Direct implementation of a nonrecursive filter.

5.3 Finite Word-Length Effects in Filter Implementation 145

to give the scaled unit-pulse response

Then the maximum output magnitude of the scaled filter will be less than or
equal to unity, and overflow will be completely avoided.

This worst-case bound is slightly conservative for two reasons. First, since the
largest positive signal value is 1 - Q, where Q is the quantization step size, (5.30)
cannot quite be attained unless all of the filter coefficients are negative. Second,
it is very unlikely that the worst-case signal, (5.29), will ever occur in practice.

We can calculate the gain factor by using one of the following two additional
measures of the size of h(n) to give a less-conservative scaling rule. Both of these
measures of gain are based on norms of the unit-pulse response h.

The 1, norm of h,

is always less than or equal to the 1, norm of h. The Chebyshev norm of the
frequency response H(f),

is also always less than the I , norm of h.
If G = Ilhlll, then the signal at the output of Fig. 5.10 is guaranteed not to

overflow. Since the 1, norm of h is less than or equal to the 1, norm of h when
G = 1 1 h 1 1 is used, larger unit-pulse response values result and the output SNR is
improved. This improved SNR comes at the expense of the possibility of
overflow. The choice of gain G = llHllc only guarantees that the steady-state
response of the system to a sine wave will not overflow. Transient signals may
occasionally cause overflows. However, the frequency-domain scaling measure
is easier to interpret than the other two norms and is often the preferred method
for calculating scaling factors." The scaling procedure is described in detail in
the design example for a length-21 filter implemented with the direct structure.

5.3.3 Quantization Noise

In Fig. 5.10 it is good practice to accumulate the sum in double precision,
reducing to the original word length only for additional processing or storage of
the output y(n). If a double-precision accumulation is not performed, quantiza-
tion errors will be introduced when the low-order bits are discarded. The
quantized signal yQ(n) is an approximation to y(n) without signal quantization.

146 Implementation of Finite Impulse-Response Filters

FIGURE 5.11. Direct implementation of a nonrecursive filter with quantization noise.

In Fig. 5.1 1 the quantization error or noise

is shown added to the correct output y(n). If single precision were used, there
would be two sources of quantization noise.

This quantization noise can be modeled as uniformly distributed, independ-
ent random variables that are independent of the signal y(n) when the number of
bits is reasonably large, the error is relatively small, and the signal is changing
rapidly enough from sample to ~amp1e.l .~ This error can be analyzed in the same
way as the error in Section 5.1.3. It is easy to understand the effect of the
quantization error in Fig. 5.1 1, because it occurs at the output of the filter and is
represented as an external white-noise source with variance

However, when the filter is implemented in the transpose structure of Fig. 5.8,
quantization noise is introduced inside the filter with the variable z,. For the
transpose structure there are two sources of quantization noise, as shown in Fig.
5.12. Because of the extra source of quantization noise in the transpose structure,
the direct form is recommended for nonrecursive filters.

There are many other structures for FIR filters. For example, the transfer
function can be factored, and the resulting shorter filter sections can be

x(n)
h2 hl ho

\ I \ /
I

?

. /

hsx(n -1) + hlx(n)

FIGURE 5.1 2. Quantization noise in the transpose structure.

5.4 Design Example 147

c a ~ c a d e d . ~ When the filter coefficients have certain symmetries, as do linear-
phase filters, special structures may be appropriate. However, for the TMS320
signal-processing chip and for most signal processors with single-cycle multiply
capability and adequate word lengths, the direct structure is usually the best
choice.

Summary

Coefficient quantization was analyzed in terms of an error system added to the
ideal system without coefficient quantization. It was shown that the magnitude
of the frequency response of the error system has an upper bound that increases
with increases in filter length and decreases when more bits are used to represent
the filter coefficients.

Scaling strategies based on the I, norm of the unit-pulse response (most
conservative), the I, norm of the unit-pulse response, and the Chebyshev norm
of the frequency response were described for reducing or eliminating overflow.

Quantization noise in the output of an FIR direct structure or a transpose
structure can be analyzed in the same way as quantization noise is analyzed in
Section 5.1.

5.4 DESIGN EXAMPLE

This design example presents the step-by-step procedure for designing a length-
21 low-pass filter. First, one enters the specifications into the design program
(Program 6) provided in the appendix. After the coefficients are calculated,
scaling is performed to prevent overflow. Finally, one writes the TMS32010
assembly language program to implement the filter, using the direct structure
shown in Fig. 5.6.

STEP 1. The first step in the design is to decide on the filter specifications. For
this example the specifications are those of Example 3.14, the length-21 low-pass
filter. The specifications and the output of Program 6 are repeated here in Fig.
5.13 for convenience.

STEP 2. The next step is to decide on the structure to be used in implementing the
filter as described in Section 5.2.1. In this example the direct structure shown in
Fig. 5.6 was chosen because it is especially easy to implement with the special
multiply/accumulate instructions on the TMS32010. For this short filter there
should be little problem with quantization effects if 16-bit coefficients are used
and 32 bits are used to accumulate the output sum.

STEP 3. Next we must scale the unit-pulse response coefficients to limit overflow
(see Section 5.3.2). Here a tradeoff must be made. If we scale the filter coefficients
small enough so that overflow will never happen, the output signal to

148 Implementation of Finite Impulse-Response Filters

..
f i n i t e i m p u l s e r e s p o n s e (f i r)

l i n e a r p h a s e d i g i t a l f i l t e r d e s i g n
r e m e s e x c h a n g e a l g o r i t h m

b a n d p a s s f i l t e r

f i l t e r l e n g t h = 2 1

l o w e r b a n d edge
u p p e r b a n d e d g e
desired v a l u e
w e i g h t i n g
d e v i a t i o n
d e v i a t i o n i n db

i m p u l s e r e s p o n s e * * * * *
0 . 1 8 2 5 5 4 3 9 e - 0 1 = h (2 1)
0 . 5 5 1 3 6 7 5 5 e - 0 1 = h (2 0)

- 0 . 4 0 9 1 0 7 2 8 e - 0 1 = h (1 9)
0 . 1 4 9 3 0 8 5 5 e - 0 1 = h (1 8)
0 . 2 7 5 6 8 5 8 4 e - 0 1 = h (1 7)

- 0 . 5 9 4 0 7 7 9 7 e - 0 1 = h (1 6)
0 . 4 4 8 4 1 8 4 1 e - 0 1 = h (1.5)
0 . 3 1 9 0 2 6 6 0 e - 0 1 = h (1 4)

-0 .14972545e+OO = h (1 3)
0 . 2 5 6 8 7 2 3 9 e + 0 0 = h (1 2)
0 .69994062e+OO = h (1 1)

b a n d 1 b a n d 2
0 . 0 . 3 7 0 0 0 0 0
0 . 3 3 0 0 0 0 0 0 . 5 0 0 0 0 0 0
1 . 0 0 0 0 0 0 0 0 .
1 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0
0 . 0 9 8 8 6 9 7 0 . 0 9 8 8 6 9 7
0 . 8 1 8 9 2 3 8 - 2 0 . 0 9 8 7 3 2 0

FIGURE 5.13. Specifications for FIR design example (Example 3.14).

I, Scaled Coefficients

Decimal Hex
0.008697 = 011 D
0.026267 = 035D

-0.019490 = FD82
0.0071 13 = 00E9
0.013134 = 01AE

-0.028302 = FC62
0.021363 = 02BC
0.01 51 99 = 01 F2

-0.071330 = F6DF
0.122376 = OFAA
0.333457 = 2AAF

FIGURE 5.14. Scaled coefficients for design example.

quantization noise ratio will be smaller than if another scaling strategy, which
allows occasional overflow, is used. The 1, and the I , norms were calculated for
this example.

1, norm = 2.09905, 1, norm = 0.831802.

Since we expected little trouble from quantization noise, we used the most
conservative scaling strategy to guarantee that overflow would never occur. All
coefficients were divided by the I , norm to give the scaled unit-pulse response
listed in Fig. 5.14. To ensure that the frequency response is still acceptable with

References 149

the quantized coefficients, one should plot it and compare it with the response
from unquantized coefficients.

STEP 4. Finally, we write an assembly language program for the direct,
nonrecursive implementation of the filter, following the program shown in Fig.
5.9. A complete assembly language program for the TMS32010 are in the
appendix (Program 11).

REFERENCES

R. A. Roberts and C. T. Mullis, Digital Signal Processing, Reading, M A : Addison-
Wesley, 1987.
L. B. Jackson, Digital Filters and Signal Processing, Boston: Kluwer, 1986.
L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1975.
H. W. Schiissler, Digital Systems for Signal Processing, Berlin: Springer-Verlag,
1973. (in German).
N. S. Jayant and P. Noll, Digital Coding of Waveforms, Englewood Cliffs, NJ:
Prentice-Hall, 1984.
TMS32010 Users Guide, Texas Instruments, 1985.
D. M. Kodek, "Design of Optimal Finite Wordlength FIR Digital Filters Using
Integer Programming Techniques," IEEE Trans. ASSP 28, 304-308 (1980).
D. M. Kodek and K. Steiglitz, "Comparison of Optimal and Local Search Methods
for Designing Finite Worldlength FIR Digital Filters," IEEE Trans. Circuits
Systems 28, 28-32 (1981).

Part Ill

In f in i te Impu lse Response
(I I R) Filters

Properties of Infinite
Impulse- Response Filters

Digital filters with an infinite-duration impulse response (IIR) have character-
istics that make them useful in many applications. This chapter develops and
discusses the properties and characteristics of these filters.

Because of the feedback necessary in an implementation, the infinite impulse
response (IIR) filter is also called a recursive filter or, sometimes, an autore-
gressive moving-average filter (ARMA). In contrast to'the FIR filter with a
polynomial transfer function, the IIR filter has a rational transfer function. The
transfer function being a ratio of polynomials means it has finite poles as well as
zeros, and the frequency-domain design problem becomes a rational function
approximation problem in contrast to the polynomial approximation for the
FIR filter. This gives considerably more flexibility and power, but brings with it
certain problems in both design and implementation.'-4

The defining relationship between the input and output variables for the IIR
filter is given by

The second summation in (6.1) is exactly the same moving average of the present
plus past M values of the input that occurs in the definition of the FIR filter in
(2.1). The difference arises from the first summation, which is a weighted sum of
the previous N output values. This is the feedback or recursive part that causes
the response to an impulse input theoretically to endure forever. The calculation
of each output term y(n) from (6.1) requires N + M + 1 multiplications and
N + M additions. Other algorithms or structures for calculating y(n) may
require more or less arithmetic. They are discussed in Chapter 8.

Just as in the case of the FIR filter, the output of an IIR filter can also be

154 Properties of Infinite Impulse-Response Filters

calculated by convolution.

-
y(n) = h(k)x(n - k).

k = O
(6.2)

In this case the duration of the impulse response h(n) is infinite, and, therefore,
the number of terms in (6.2) is infinite. The N + M + 1 operations required in
(6.1) are clearly preferable to the infinite number required by (6.2). This gives a
hint as to why the IIR filter is very efficient. The details will become clear as the
characteristics of the IIR filter are developed in this chapter.

6.1 FREQUENCY-DOMAIN FORMULATION
OF IIR FILTERS

The transfer function of a filter is defined as the ratio Y(z) /X(z) , where Y(z) and
X(z) are the z transforms of the output y(n) and input x(n), respectively. It is also
the z transform of the impulse response. Using the definition of the z transform
in (2.4), we obtain the transfer function of the IIR filter defined in (6.1):

This transfer function is also the ratio of the z transforms of the a(n) and b(n)
terms.

The frequency response of the filter, as shown in Section 1.2, is found by setting
z = ej", which gives (6.3) the form

Recall that this form assumes a sampling rate of T = 1. To simplify notation, we
use H(o) rather than H(ej") to denote the frequency response.

This frequency-response function is complex valued and consists of a
magnitude and a phase. Even though the impulse response is a function of the
discrete variable n, the frequency response is a function of the continuous-
frequency variable 01 and is periodic with period 2i7, as was shown for the FIR
case in Section 2.1.

Unlike the FIR filter case, exactly linear phase is impossible for the IIR filter.
In (2.18) and (2.23) we showed that linear phase is equivalent to symmetry of the

6.2 Calculation of IIR Filter Frequency Response 155

impulse response. This equivalency is clearly impossible for the IIR filter with an
impulse response that is zero for n < 0 and nonzero for n going to infinity.

The FIR linear-phase filter allowed us to remove the phase from the design
process. The resulting problem was a real-valued approximation problem
requiring the solution of linear equations. The IIR filter design problem is more
complicated. Linear phase is not possible, and the equations to be solved are
generally nonlinear. The most common technique is to approximate the
magnitude of the transfer function and let the phase take care of itself. If the
phase is important, it becomes part of the approximation problem, which then is
often difficult to solve.

6.2 CALCULATION O F IIR FILTER
FREQUENCY RESPONSE

As shown in Sections 2.2 and 2.2.2, L equally spaced samples of H (o) can be
approximately calculated by taking an L-length DFT of h(n) given in (6.5).
However, unlike for the FIR filter, this requires that the infinitely long impulse
response be truncated to at least length L. A more satisfactory alternative is to
use the DFT to evaluate the numerator and denominator of (6.4) separately
rather than to approximately evaluate (6.3). We do this by appending L - N
zeros to the a(n) and L - M zeros to the b(n) from (6.1) and by taking length-L
DFTs of both to give

where the division is a termwise division of each of the L values of the DFTs as a
function of k. This direct method of calculation is a straightforward and flexible
technique that does not involve truncation of h(n) and the resulting error. Even
nonuniform spacing of the frequency samples can be achieved by altering the
DFT defined in (2.7) as was suggested for the FIR filter. Because IIR filters are
generally lower in order than FIR filters, direct use of the DFT is usually
efficient enough, and use of the FFT is not necessary. Since the a(n) and h(n) do
not generally have the symmetries of the FIR h(n), the DFTs cannot be made
real; therefore, the shifting and stretching techniques of Section 2.2.2 are not
applicable.

An example of the frequency-response plot of a third-order elliptic function
low-pass filter with transfer function

6.2 Calculation of IIR Filter Frequency Response 155

impulse response. This equivalency is clearly impossible for the IIR filter with an
impulse response that is zero for n < 0 and nonzero for n going to infinity.

The FIR linear-phase filter allowed us to remove the phase from the design
process. The resulting problem was a real-valued approximation problem
requiring the solution of linear equations. The IIR filter design problem is more
complicated. Linear phase is not possible, and the equations to be solved are
generally nonlinear. The most common technique is to approximate the
magnitude of the transfer function and let the phase take care of itself. If the
phase is important, it becomes part of the approximation problem, which then is
often difficult to solve.

6.2 CALCULATION OF IIR FILTER
FREQUENCY RESPONSE

As shown in Sections 2.2 and 2.2.2, L equally spaced samples of H (o) can be
approximately calculated by taking an L-length DFT of h(n) given in (6.5).
However, unlike for the FIR filter, this requires that the infinitely long impulse
response be truncated to at least length L. A more satisfactory alternative is to
use the DFT to evaluate the numerator and denominator of (6.4) separately
rather than to approximately evaluate (6.3). We do this by appending L - N
zeros to the a(n) and L - M zeros to the b(n) from (6.1) and by taking length-L
DFTs of both to give

where the division is a termwise division of each of the L values of the DFTs as a
function of k. This direct method of calculation is a straightforward and flexible
technique that does not involve truncation of h(n) and the resulting error. Even
nonuniform spacing of the frequency samples can be achieved by altering the
DFT defined in (2.7) as was suggested for the FIR filter. Because IIR filters are
generally lower in order than FIR filters, direct use of the DFT is usually
efficient enough, and use of the FFT is not necessary. Since the a(n) and b(n) do
not generally have the symmetries of the FIR h(n), the DFTs cannot be made
real; therefore, the shifting and stretching techniques of Section 2.2.2 are not
applicable.

An example of the frequency-response plot of a third-order elliptic function
low-pass filter with transfer function

156 Properties of Infinite Impulse-Response Filters

FIGURE 6.1. Magnitude frequency response of a third-order IIR filter.

is given in Fig. 6.1. The details for designing this filter are discussed in Section
7.2.8. A similar performance for the magnitude response would require a length
of 18 for a linear-phase FIR filter.

6.3 LOCATIONS OF POLES AND ZEROS
FOR IIR FILTERS

In Section 2.2.3 the possible locations of the zeros of the transfer function of
an FIR linear-phase filter were analyzed. For the IIR filter there are poles as well
as zeros. For most applications the coefficients a(n) and h(n) are real, and
therefore the poles and zeros occur in complex-conjugate pairs, or they are real.
A filter is stable if, for any bounded input, the output is bounded. This stability
implies that the poles of the transfer function must be strictly inside the unit
circle of the complex z plane. Indeed, the possibility of an unstable filter in IIR
filter design is a serious problem that does not exist for FIR filters. An important
characteristic of any design procedure is the guarantee of stable designs, and an
important ability in the analysis of a given filter is the determination of stability.
For a linear filter analysis, stability determination involves the zeros of the
denominator polynomial of (6.4). The location of the zeros of the numerator,
which are the zeros of H(z), are important to the performance of the filter, but
they have no effect on stability.

6.3 Locations of Poles and Zeros for IIR Filters 157

I z plane

FIGURE 6.2. Pole and zero locations for a third-order IIR filter.

If all poles and zeros of a transfer function are inside or on the unit circle of
the z plane, the filter is called minimum phase. The effects on the magnitude of the
transfer function of a pole or a zero at a radius r from the origin of the z plane are
exactly the same as a pole or zero at the same angle but at a radius of l lr .
However, the effect on the phase characteristics is different. Because stable filters
only are generally used in practice, all poles must be inside the unit circle. For a
given magnitude response there are two possible locations for each zero not on
the unit circle. The location that is inside gives the least phase shift-hence the
name "minimum-phase" filter. The locations of the poles and zeros of the
example in (6.7) are given in Fig. 6.2.

Since evaluating the frequency response of a transfer function is the same as
evaluating H(z) around the unit circle in the z plane, a comparison of the
frequency-response plot in Fig. 6.1 and the pole-zero locations in Fig. 6.2 gives
inkight into the effects of pole and zero locations on the frequency response.
When it is desirable to reject certain bands of frequencies, zeros of the transfer
function will be located on the unit circle at locations corresponding to those
frequencies. This case is illustrated in the examples in Chapter 7 .

By using both poles and zeros to describe an IIR filter, we can do much more
than in the FIR filter case where only zeros exist. Indeed, an FIR filter is a
special case of an IIR filter with a zero-order denominator. This generality and
flexibility do not come without a price. The poles are more difficult to realize
than the zeros, and the design is more complicated.

Summary

This chapter gave the basic definition of the IIR or recursive digital filter and
compared it to a generalization of the FIR filter described in previous chapters.
The feedback terms in the IIR filter cause the transfer function to be a rational
function with poles as well as zeros. This feedback and the resulting poles of the
transfer function give a more versatile filter: fewer stored coefficients and less
arithmetic are required. Unfortunately, it also destroys the possibility of linear
phase and introduces the possibility of instability and greater sensitivity to the

158 Properties of Infinite Impulse-Response Filters

effects of quantization. The design methods, which are more complicated than
for the FIR filter, are discussed in Chapter 7, and the implementation, which also
is more complicated, is discussed in Chapter 8.

REFERENCES

[I] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Englewood Cliffs,
NJ: Prentice-Hall, 1975.

[2] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1975.

[3] F. J. Taylor, Digital Filter Design Handbook, New York: Dekker, 1983.

[4] R. A. Roberts and C. T. Mullis, Digital Signal Processing, Reading, MA: Addison-
Wesley, 1987.

151 L. B. Jackson, Digital Filters and Signal Processing, Boston: Kluwer, 1986.

Design of Infinite
Impulse- Response Filters

The design of a digital filter is usually specified in terms of the characteristics of
the signals to be passed through the filter. In many cases the signals are
described in terms of their frequency content. For example, even though it
cannot be predicted just what a person may say, it can be predicted that the
speech will have frequency content between 300 and 4000 Hz. Therefore, a filter
can be designed to pass speech without knowing what the speech is. This
frequency-domain description is true of many signals and of many types of noise
or interference. For these reasons, among others, specifications for filters are
generally given in terms of the frequency response of the filter.

The basic IIR filter design process is similar to that for the FIR problem:

1. Choose a desired response, usually in the frequency domain.
2. Choose an allowed class of filters-in this case, the Nth-order IIR filters.
3. Establish a measure of distance between the desired response and the

actual response of a member of the allowed class.
4. Develop a method to find the best allowed filter as measured by being

closest to the desired response.

This chapter develops several practical methods for IIR filter design. A very
important set of methods is based on converting Butterworth, Chebyshev I and
11, and elliptic-function analog filter designs to digital filter designs by both the
impulse-invariant method and the bilinear transformation. The characteristics
of these four approximations are based on combinations of a Taylor series and a
Chebyshev approximation in the pass band and stop band. Many results from
this chapter can be used for both analog and digital filter design.

Extensions of the frequency-sampling and LS error designs for the FIR filter
are developed for the IIR filter. This chapter describes several direct iterative

160 Design of Infinite Impulse-Response Filters

numerical methods for optimal approximation. Prony's method and direct
numerical methods are presented for designing IIR filters according to time-
domain specifications.

The discussion of the four classical low-pass filter design methods is arranged
so that each method has a section on properties and a section on design
procedures. There are also design programs in the appendix. An experienced
person can simply use the design programs. A less-experienced designer should
read the design procedure material, and someone who wants to understand the
theory in order to modify the programs, develop new programs, or better
understand the given ones should study the properties sections and consult the
references.

7.1 RATIONAL FUNCTION APPROXIMATION

The mathematical problem inherent in the frequency-domain filter design
problem is the approximation of a desired complex frequency-response function
H,(z) by a rational transfer function H(z) with an Mth-degree numerator and an
Nth-degree denominator for values of the complex variable z along the unit
circle of z = ej". This approximation is achieved by minimizing an error
measure between H,(w) and H(w).

For the digital filter design problem, the mathematics are complicated by the
approximation being defined on the unit circle. In terms ofz, frequency is a polar
coordinate variable. It is often much easier and clearer to formulate the problem
such that frequency is a rectangular coordinate variable, which is the way it
naturally occurs for analog filters using the Laplace complex variable s. A
particular change of complex variable that converts the polar coordinate
variable to a rectangular coordinate variable is the bilinear transformation1-2

The details of the bilinear and alternative transformations are covered in Section
7.3. For the purposes of this section it is sufficient for us to that the
frequency response of a filter in terms of the new variable is found by evaluating
H(s) along the imaginary axis (i.e., for s = jw). The frequency response of analog
filters is obtained in exactly this way.

There are two reasons that the approximation process is often formulated in
terms of the square of the magnitude of the transfer function rather than in terms
of the real and/or imaginary parts of the complex transfer function or in terms of
the magnitude of the transfer function. The first reason is that the squared
magnitude frequency-response function is an analytic, real-valued function of a
real variable, and this considerably simplifies the problem of finding a "best"
solution. The second reason is that the effects of the signal or interference are
often stated in terms of the energy or power, which is proportional to the square
of the magnitude of the signal or noise.

7.2 Classical Analog Low-Pass Filter Approximations 161

To move back and forth between the transfer function F(s) and the squared
magnitude frequency response IF(jo)lZ, we define an intermediate function. We
define the analytic complex-valued function of the complex variable s by

9 (s) = F(s)F(- s), (7.2)

which is related to the squared magnitude by

If

then

In this context the approximation is arrived at in terms of F(jw) , and the result is
an analytic function 9 (s) with a factor F(s), which is the desired filter transfer
function in terms of the rectangular variable s. We can define a comparable
function in terms of the digital transfer function, using the polar variable z by
defining

which gives the magnitude squared frequency response when evaluated around
the unit circle-that is, z = ej".

The next section develops four useful approximations, using the continuous-
time Laplace transform formulation in s. These approximations will be
transformed into digital transfer functions by techniques covered in Section 7.3.
They can also be used directly for analog filter design.

7.2 CLASSICAL ANALOG LOW-PASS FILTER APPROXIMATIONS

Four basic filter approximations are considered to be standard. They are often
developed and presented in terms of a normalized low-pass filter that can be
modified to give other versions, such as high-pass or bandpass filters. These four

162 Design of Infinite Impulse-Response Filters

forms use Taylor series approximations and Chebyshev approximations in
various ~ornbinations.'~~"~'~-'~ None is defined in terms of a mean squared
error measure. Although it would be an interesting error criterion, the reason is
that there is no closed-form solution to the LS error approximation problem,
which is nonlinear for the IIR filter.

This section develops the four classical approximations in terms of the
Laplace transform variable s. They can be used as prototype filters to be
converted into digital filters or used directly for analog filter design.

The desired low-pass filter frequency response is similar to the case for the
FIR filter, given in Fig. 3.1 and (3.26). Here it is expressed in terms of the
magnitude squared of the transfer function, which is a function of s = jw and is
illustrated in Fig. 7.1.

The Butterworth filter uses a Taylor series approximation to the ideal at both
w = 0 and w = co. The Chebyshev filter uses a Chebyshev (min-max) approxi-
mation across the pass band and a Taylor series at w = a. The inverse or type
I1 Chebyshev filter uses a Taylor series approximation at w = 0 and a
Chebyshev approximation across the stop band. The elliptic function filter uses
a Chebyshev approximation across both the pass band and stop band. The
squared magnitude frequency response for these approximations to the ideal in
Fig. 7.1 is given in Fig. 7.2, and the design is developed in the following sections.

7.2.1 Butterworth Filter Properties

This section develops the properties of the Butterworth filter, which has as its
basic concept a Taylor series approximation to the desired frequency response.
The measure of the approximation is the number of terms in the Taylor series
expansion of the actual frequency response that can be made equal to those of
the desired frequency response. The optimal or best solution will have the
maximum number of terms equal. The Taylor series is a power series expansion
of a function in the form

where

FIGURE 7.1. Desired frequency response of an ideal low-pass filter.

7.2 Classical Analog Low-Pass Filter Approximations 163

and so on, with the coefficients of the Taylor series being proportional to the
various order derivatives of F(w) evaluated at w = 0. A basic characteristic of
this approach is that the approximation is all performed at one point (i.e., at one
frequency). The ability of this approach to give good results over a range of
frequencies depends on the analytic properties of the response.

The general form for the squared magnitude response is an even function of o
and, therefore, is a function of w2 expressed as

To obtain a solution that is a low-pass filter, we perform the Taylor series
expansion around o = 0, requiring F (0) = 1 and F(jco) = 0 (i.e., do = c,,
N > M , and c2, # 0). We write it as

Combining (7.5) and (7.6) gives

The best Taylor approximation requires that FGo) and the desired ideal
response have as many terms as possible equal in their Taylor series expansion
at a given frequency. For a low-pass filter the expansion is around w = 0, which
requires E(o) to have as few low-order o terms as possible. This condition is
achieved by setting

C Z N 2 = 0,

C ~ N = nonzero.

Because the ideal response in the pass band is a constant, the Taylor series
approximation is often called maximally pa t .

Equation (7.8) states that the numerator of the transfer function may be
chosen arbitrarily. Then by setting the denominator coefficients of g (s) equal to
the numerator coefficients plus one higher-order term, we obtain an optimal
Taylor's series appro~imation '~.

FIGURE 7.2. Frequency responses of the four classical low-pass IIR filter approximations. (a)
Butterworth; (b) Chebyshev; (c) inverse Chebyshev; (d) elliptic function.

166 Design of Infinite Impulse-Response Filters

Since the numerator is arbitrary, its coefficients can be chosen for a Taylor
approximation to zero at o = a. We do this by setting do = 1 and all other d's
equal to zero. The resulting magnitude squared function is'319

The value of the constant cZN determines at which value of w the transition of
pass band to stop band occurs. For this development it is normalized to c2, = 1,
which causes the transition to occur at w = 1. These approximations and
normalizations give the simple form for what is called the Butterworth filter:

This approximation is sometimes called maximally flat at both o = 0 and
o = oo, since it is simultaneously a Taylor series approximation to unity at
o = 0 and to zero at o = oo. A graph of the resulting frequency-response
function is shown in Fig. 7.3 for several N.

The characteristics of the normalized Butterworth filter frequency response
are the following:

0

FIGURE 7.3. Butterworth filter frequency responses.

7.2 Classical Analog Low-Pass Filter Approximations 167

1. It is very close to the ideal near w = 0 and w = m.

2. It is very smooth at all frequencies with a monotonic decrease from w = 0
to oo.

3. The largest difference occurs between the ideal and actual responses near
the transition at w = 1, where JF(j,)12 = 4.

Although not part of the approximation addressed, the phase curve is also very
smooth.

An important feature of the Butterworth filter is the closed-form formula for
the solution, F(s). From (7.3) the expression for 4 (s) may be determined as

This function has 2N poles evenly spaced around a unit radius circle and 2N
zeros at infinity. The determination of F(s) is very simple. To have a stable filter,
we select F(s) to have the N left-hand plane poles and N zeros at infinity; F(-s)
will necessarily have the right-hand plane poles and the other N zeros at infinity.
The locations of these poles on the complex s plane for N = 1, 2, 3, and 4 are
shown in Fig. 7.4.

Pole Location
Because of the geometry of the pole positions, simple formulas are easy to derive
for the pole locations. If the real and imaginary parts of the pole location are
denoted by

s = u + j w ,

(c) (4
FIGURE 7.4. Pole locations for Butterworth filter transfer. Functions F(s) on the complex s plane.
(a) N = 1; (b) N = 2; (c) N = 3; (d) N = 4.

168 Design of Infinite Impulse-Response Filters

the locations of the N poles are given by

for N values of k where

k = f 1 , k 3 , + 5 , . . . , f (N - 1) for Neven,

k = 0, f 2 , f 4 , . . . , k (N - 1) forNodd.

Because the coefficients of the numerator and denominator polynomials of F(s)
are real, the roots occur in complex-conjugate pairs. The conjugate pairs in
(7.1 1) can be combined to be the roots of second-order polynomials so that for N
even F(s) has the partially factored form

for k = 1 , 3, 5 , . . . , N - 1. For N odd, F(s) has a single real pole; therefore

for k = 2, 4, 6, . . . , N - 1. This form is convenient for the cascade and parallel
realizations discussed in Chapter 8.

A single formula for the pole locations for both even and odd N is

for N values of k, where k = 0, 1, 2,. . . , N - 1.
One of the important features of the Butterworth filter design formulas is that

the pole locations are found by independent calculations, which do not depend
on each other or on factoring a polynomial. Program 9 calculates these values.

The classical form of the Butterworth filter given in (7.10) is discussed in many
 book^.',^^^,"^'^,'^^^^ The less well-known form given in (7.8) also has many
useful application^'^. If the frequency location of unwanted signals is known,
the zeros of the transfer function given by the numerator can be set to best reject
them. It is then possible to choose the pole by using (7.8) to have a pass band as
flat as the classical Butterworth filter. Unfortunately, there are no formulas for
the pole locations; therefore, the denominator polynomial must be factored.

7.2 Classical Analog Low-Pass Filter Approximations 169

Summary

This section derived design procedures and formulas for a class of filter transfer
functions that approximate the ideal desired frequency response by a Taylor
series. If the approximation is made at o = 0 and o = co, the resulting I'llter is
called a Butterworth filter and the response is called maximally flat at zero and
infinity. This filter has a very smooth frequency response and, although not
explicitly designed for, a smooth phase response. Simple formulas for the pole
locations were derived and are implemented in the design program in the
appendix.

7.2.2 Butterworth Filter Design Procedures

This section considers the process of going from given specifications to use of the
approximation results derived in the previous section. The Butterworth filter is
the simplest of the four classical filters in that all the approximation effort is
placed at two frequencies: o = 0 and o = co. The transition from pass band to
stop band occurs at a normalized frequency o = 1. Assuming that this
transition frequency or band edge can later be scaled to any desired frequency,
the only parameter to be chosen in the design process is the order N.

The filter specifications that are consistent with what is optimized in the
Butterworth filter are the degree of "flatness" at o = 0 (DC) and at o = co. The
higher the order, the flatter the frequency response at these two points. Because
of the analytic nature of rational functions, the flatter the response is at o = 0
and oo, the closer it stays to the desired response throughout the whole pass
band and stop band. An indirect consequence of the filter order is the slope of
the response at the transition between pass band and stop band. The slope of the
squared magnitude frequency response at o = 1 is

N
slope = 9 ' (j l) = - -

2

The effects of the increased flatness and increased transition slope of the
frequency response as N increases are illustrated in Fig. 7.3.

In some cases specifications state the response must stay above or below a
certain value over a given frequency band. Although this type of specification is
more compatible with a Chebyshev error optimization, it is possible to design a
Butterworth filter to meet the requirements. If the magnitude of the frequency
response of the filter over the pass band of 0 < o < o, must remain between
unity and G, where o, < 1 and G < 1, we find the required order by determining
the smallest integer N satisfying

N 2
l ~ g ((l / G) ~ - 1)

2 log 0, .

170 Design of Infinite Impulse-Response Filters

FIGURE 7.5. Pass-band specifications for designing a Butterworth filter.

This specification is illustrated in Fig. 7.5, where IF1 must remain above 0.9 for o
up to 0.9; that is, G = 0.9 and o, = 0.9. These requirements require an order of
at least N = 7 .

If stop-band performance is stated in the form of requiring that the response
stay below a certain value for frequency above a certain value-that is, IF1 < G
for o > us--the order is determined by the same formula (7.15) with o,
replaced by w,.

Example 7.1. Design of a Butterworth Low-Pass ZZR Filter
To illustrate the calculations, we design a low-pass Butterworth filter. We

want the frequency response to stay above 0.8 for frequencies up to 0.9. Formula
(7.15) for determining the order gives a value of 2.73; therefore, the order is 3.
The analytic function corresponding to the squared magnitude frequency
response in (7.10) is

The transfer function corresponding to the left half-plane poles of F'(s) are
calculated from (7.1 1) or (7.12) to give

7.2 Classical Analog Low-Pass Filter Approximations 171

We obtain the frequency response by setting s = jw, which has a plot illustrated
in Fig. 7.3 for N = 3. The pole locations are the same as shown in Fig. 7 .4~ .

7.2.3 Chebyshev Filter Properties

Frequently the Butterworth filter does not give a sufficiently good approxi-
mation across the complete pass band. The Taylor series approximation is often
not suited to the way specifications are given for filters. An alternative error
measure is the maximum of the absolute value of the difference between the
actual filter response and the ideal response. This measure is considered over the
total pass band. It is the Chebyshev error measure, which was defined and
applied to the FIR filter design problem in Section 3.3. For the IIR filter the
Chebyshev error is minimized over the pass band, and a Taylor series
approximation at w = co is used to determine the stop-band performance. This
mixture of methods in the IIR case is called the Chebyshevjlter, and we obtain
simple design formulas just as for the Butterworth filter.

The design of Chebyshev filters is particularly interesting, because the results
of a very elegant theory ensure that constructing a frequency-response function
with the proper form of equal ripple in the error will give a minimum Chebyshev
error without explicitly minimizing anything. That allows a straightforward set
of design formulas to be derived, which can be viewed as a generalization of the
Butterworth formula^.'^*'^

The form for the magnitude squared of the frequency-response function for
the Chebyshev filter is

where CN(o) is an Nth-order Chebyshev polynomial and E is a parameter that
controls the ripple size. This polynomial in o has very special characteristics
that result in the optimality of the response function (7.19).

Cheb yshev Polynomials
The Chebyshev polynomial is a powerful function in approximation theory.
Although the function is a polynomial, it is best defined and developed in terms
of trigonometric functions by',7*18,'9

CN(w) = cos(N cos - '(a)), (7.20)

where CN(o) is an Nth-order, real-valued function of the real variable w. The

172 Design of Infinite Impulse-Response Filters

development is made clearer by introducing an intermediate complex variable
4:

C,(w) = cos(Ncj), where w = cos(4). (7.21)

Although this definition of C(o) may not at first appear to give a polynomial, the
following recursive relation derived from (7.21) shows that it is indeed a
polynomial.

From (7.20) it is clear that C, = 1 and C, = o , and from (7.22) it follows that

Other relations useful for developing these polynomials are

c; = +[C2, + 11,
(7.24)

C,, = C,(C,(o)) where M and N are coprime.

These functions are remarkable18,'9. They oscillate between + 1 and - 1 for
- 1 < o < 1 and go monotonically to 5 co outside that domain. All N of their
zeros are real and fall in the domain - 1 < o < 1; that is, C, approximates zero
over the range of o from - 1 to + 1. In addition, the values for o where C,
reaches its local maxima and minima and is zero are easily calculated from

FIGURE 7.6. Chebyshev polynomials for N = 1, 2, 3, and 4.

174 Design of Infinite Impulse-Response Filters

Pass band W

FIGURE 7.7. Fifth-order Chebyshev filter frequency response.

(7.21). For - 1 < o < 1 we can plot C d o) by using the concept of Lissajous
figures1'. Figure 7.6 shows example plots for C,, C,, C,, and C,. Figure 7.7 gives
the filter frequency-response function for N = 5 and shows the pass-band ripple
in terms of the parameter E.

The approximation parameters must be clearly understood. The pass-band
ripple is defined to be the difference between the maximum and the minimum of
IF1 over the pass-band frequencies of 0 < o < 1. This point can be confusing
because two definitions appear in the literature. Most digital's2 and
filter design books use the definition just stated. Approximation literature,
especially concerning FIR filters, and the ASP1 design program'' use one half of
this value, which is a measure of the maximum error, (I F (- I F , I / , where IF,,(is
the center line in the pass band of Fig. 7.7, around which JFI oscillates.

The Chebyshev theory states that the maximum error over that band is
minimal and this optimal approximation function has equal ripple over the pass
band. It is easy to see that E in (7.19) determines the ripple in the pass band and
the order N determines the rate that the response goes to zero as o goes to
infinity.

Pole Locations

We now develop a method for finding the pole locations for the Chebyshev filter
transfer function. The details of this section can be skipped, and the results in
(7.31) can be used if the reader desires.

7.2 Classical Analog Low-Pass Filter Approximations 175

From (7.19) we see that the poles of F (s) occur when

From (7.21) define q5 = c o s l (o) with real and imaginary parts given by

q5 =cos-'(0) = u +jv. (7.26)

This gives, from (7.21) and (7.25),

j C, = cos(Nq5) = cos(Nu)cosh(Nv) - j sin(Nu)sinh(No) = f -, (7.27)
E

which implies that the real part of C, is zero. Therefore

cos(Nu)cosh(No) = 0,

which implies

cos(Nu) = 0,

which implies that u assumes values of

For these values of u sin(Nu) = f 1, and (7.27) becomes

which requires v to assume a value of

u = u o =
sinh - '(11~)

N .

Using s = jo and (7.26) give

s = jo = j cos(4) = j cos(u + ju)

= j cos
((2kL1)n + jvo).

176 Design of Infinite Impulse-Response Filters

This equation gives the location of the N poles in the s plane as

Sk = ak + j o k ,

where

for N values of k. where

+ 1 , + 3 , + 5 , . . . , + (N - 1) for Neven,
0, + 2 , +4, . . . , f (N - 1) for N odd.

We can derive a partially factored form for F(s) from (7.31) by using the same
approach as for (7.12) for the Butterworth filter. For N even the form is

For k = 1 , 3 , 5 , . . . , N - 1. For N odd, F(s) has a single real pole, and therefore
the form

for k = 2 , 4 , 6, . . . , N - 1. This form is convenient for the cascade and parallel
realizations discussed in Chapter 8.

A single formula for even and odd N is

for N values of k, where k = 0, 1, 2 , . . . , N - 1. Note the similarity to the pole
locations for the Butterworth filter in (7.12) and (7.13). Cross-multiplying,
squaring, and adding the terms in (7.33) gives

This equation is that of an ellipse and shows that the poles of a Chebyshev filter

7.2 Classical Analog Low-Pass Filter Approximations 177

lie on an ellipse in a way similar to the way poles of a Butterworth filter lie on a
-3,7,18.19

Summary

This section developed the classical Chebyshev filter approximation, which
minimizes the maximum error over the pass band and uses a Taylor series
approximation at infinity. Thus the error is equal ripple in the pass band. The
transfer function was developed in terms of the Chebyshev polynomial, and
explicit formulas were derived for the location of the transfer function poles.
These formulae can be expressed as a modification ef the pole locations for the
Butterworth filter and are implemented in Program 9.

It is possible to develop a theory for Chebyshev pass-band approximation
and arbitrary zero location similar to the Taylor series result in (7.8). That
theory is described in references 24 and 25 and is not covered in this book.

7.2.4 Chebyshev Filter Design Procedures

The Chebyshev filter has a pass band optimized to minimize the maximum error
over the complete pass-band frequency range, and a stop band controlled by the
frequency response being maximally flat at o = a. The pass-band ripple and
the filter order are the two parameters to be determined by the specifications.

The form for the specifications that is most consistent with the Chebyshev
filter formulation is a maximum allowed error in the pass band and a desired
degree of "flatness" at o = m. The slope of the response near the transition from
pass band to stop band at to = 1 becomes steeper as both the order increases
and the allowed pass-band and error ripple increases. The dropoff is more rapid
than for the Butterworth

As stated earlier, the design parameters must be clearly understood to obtain
a desired result. The pass-band ripple is defined to be the difference between the
maximum and the minimum of I FI over the pass-band frequencies of 0 < o < 1.
This point can be confusing because two definitions appear in the literature.
Most digital'*2 and filter design books use the definition just stated.
Approximation literature, especially concerning FIR filters, and the ASP1 design
program" use half this value, which is a measure of the maximum error,
IIF(- IFd(I, where JFdI is the center line in the pass band of Fig. 7.7 around which
IF1 oscillates. The following formulas relate the pass-band ripple d, the pass-
band ripple a in positive dB, and the transfer function parameter &.

a = 10 log(1 + c2) = -20 log(1 - d), (7.35)

178 Design of Infinite Impulse-Response Filters

In some cases stop-band performance is not given in terms of degree of
flatness at w = co, but in terms of a maximum allowed magnitude G in the stop
band above a certain frequency w,; that is, G > (FJ > 0 for 1 < w, < w < co.-For
a given E this will determine the order as the smallest positive integer satisfying

The design of a Chebyshev filter involves the following steps:

1. The maximum allowed pass-band variation must be in the form of d or a.
From this variation the parameter E is calculated by (7.36).

2. The order N is determined by the desired flatness at w = co or a maximum
allowed response for frequencies above w, by (7.38).

3. v, is calculated from E and n by (7.29), and the scale factors sinh(v,) and
cosh(v,) are then determined.

4. The pole locations are calculated from (7.31) or (7.33) by scaling the poles
of a Butterworth prototype filter.

5. These pole locations are combined in (7.32) to give the final filter transfer
function.

This process is easily programmed for computer-aided design, as illustrated in
Program 9 in the appendix.

If the design procedure uses (7.38) to determine the order and the right-hand
side of the equation is not exactly an integer, it is possible to improve on the
specifications. Direct use of the order with E from (7.36) gives a stop-band gain at
o, that is less than G, or the same design can be viewed as giving the maximum
allowed gain G at a lower frequency than w,. An alternative approach is to solve
(7.38) for a new value of E, then cause (7.38) to be an equation with the specified
w, and G. This approach gives a filter that exactly meets the stop-band
specifications and gives a smaller pass-band ripple than originally requested. A
similar set of alternatives exists for the elliptic function filter in Section 7.2.7.

Example 7.2. Design of a Chebyshev Low-Pass Filter
The design specifications require a maximum pass-band ripple of d = 0.1 or

a = 0.91515 dB and can allow no greater response than G = 0.2 for frequencies
above w, = 1.6 rad/s. Given d = 0.1 or a = 0.9151 5, equation (7.36) implies I

1

Given G = 0.2 and w, = 1.6, equation (7.38) implies an order of N = 3. From E

and N, u, is 0.49074 from (7.29) and

7.2 Classical Analog Low-Pass Filter Approximations 179

These multipliers are used to scale the root locations of the third-order
Butterworth filter in Example 7.1 to give

F(s) =
1

s3 + 1.02135s2 + 1.271579s + 0.516185'
(7.42)

The frequency response is shown in Fig. 7.8, and the pole locations on the s
plane are shown in Fig. 7.9.

7.2.5 Inverse Chebyshev Filter Properties

A second form of the mixture of the Chebyshev approximation and a Taylor
series approximation is called the inverse Chebyshev filter or the Chebyshev I I
filter. This error measure uses a Taylor's series for the pass band, just as for the

FIGURE 7.8. Example third-order Chebyshev filter frequency response.

180 Design of Infinite Impulse-Response Filters

s plane +
FIGURE 7.9. Pole locations in the s plane for the example Chebyshev filter.

W

FIGURE 7.1 0. An inverse Chebyshev filter frequency response.

Butterworth filter, and minimizes the maximum error over the total stop band.
It reverses the types of approximation used in the preceding section. A fifth-
order example is illustrated in Fig. 7.10.

It is easier to modify the results from the regular Chebyshev filter than to
develop the approximation directly. First, the frequency variable o in the
regular Chebyshev filter, described in (7.19), is replaced by l/o, which inter-
changes the characteristics at o = 0 and o = 0 and does not change the
performance at o = 1. Thus a Chebyshev low-pass filter is converted to a
Chebyshev high-pass filter, as illustrated in Fig. 7.1 1. This high-pass character-

7.2 Classical Analog Low-Pass Filter Approximations 181

FIGURE 7.11. Low-Pass to high-pass transformation.

istic is subtracted from unity to give the desired low-pass inverse Chebyshev
frequency response illustrated in Fig. 7.10. The resulting magnitude squared
frequency-response function is

Zero Locations
The zeros of the Chebyshev polynomial CN(w) are easily found from (7.20) by

which requires

182 Design of Infinite Impulse-Response Filters

for

The zeros of the inverse Chebyshev filter transfer function are derived from (7.43)
and (7.45) to give

The zero locations are not functions of e; that is, they are independent of the
stop-band ripple.

Pole Locations
The pole locations are the reciprocal of those for the regular Chebyshev filter
given in (7.31) or (7.33). If the poles for the inverse filter are denoted by

the locations in terms of the variables of (7.32) or (7.33) are

Although this gives a straightforward formula for calculating the location of
the poles and zeros of the inverse Chebyshev filter, they do not lie on a simple
geometric curve as did those for the Butterworth and Chebyshev filters. Note
that the conditions of (7.8) for a Taylor series approximation with preset zero
locations are satisfied in (7.43).

A partially factored form analogous to (7.12) for the Butterworth filter and
(7.32) for the Chebyshev filter can be written for the inverse Chebyshev filter by
using the zero locations from (7.47) and the pole locations from the regular
Chebyshev filter given in (7.31) and (7.32). For N even we get

for k = 1 , 3 , 5 , . . . , N - 1. For N odd, F(s) has a single pole and therefore is of the
form

7.2 Classical Analog Low-Pass Filter Approximations 183

Because of the relationships between the locations of the poles of the
Butterworth, Chebyshev, and inverse Chebyshev filters, it is easy to write a
design program with many common calculations. That is illustrated in Program
9 in the appendix.

7.2.6 Inverse Chebyshev Filter Design Procedures

The natural form for the specifications of an inverse Chebyshev filter is in terms
of the response flatness at w = 0 (to determine the pass band) and a maximum
allowable response in the stop band. The filter order and the stop-band ripple
are the parameters to be determined by the specifications. The rate of dropoff
near the transition from pass band to stop band is similar to the regular
Chebyshev filter. Because practical specifications often allow more pass-band
ripple than stop-band ripple, the regular Chebyshev filter will usually have a
sharper dropoff than the inverse Chebyshev filter will. Under those conditions
the inverse Chebyshev filter will have a smoother phase response and less time-
domain echo effects.

The stop-band ripple d is simply defined as the maximum value that IF(jw)l
assumes in the stop band, which is the set of frequencies 1 < w < ca. An
alternative specification is the minimum allowed attenuation over stop band
expressed in dB as b. The following formulas relate the stop-band ripple d, the
stop-band attenuation b in positive dB, and the transfer function parameter E in
(7.43):

In some cases pass-band performance is given not in terms of degree of
flatness at w = 0 but in terms of a minimum allowed magnitude G in the pass
band up to a certain frequency w,; that is, 1 > IF1 > G for 0 < w < w, < 1. For
a given E this requirement will determine the order as the smallest positive
integer satisfying

184 Design of Infinite Impulse-Response Filters

The design of an inverse Chebyshev filter is summarized in the following
steps:

1. The maximum allowed stop-band response must be given in the form of d
or b. From this response the parameter E is calculated by (7.51).

2. The order N is determined from the desired flatness at o = 0 or from a
minimum allowed response for frequencies up to o, by (7.54).

3. u,, sinh(v,), and cosh(vo) are calculated from (7.29) and (7.31), just as for the
regular Chebyshev filter.

4. The pole locations for the prototype Chebyshev filter are calculated from
(7.31) or (7.33) and then "inverted" according to (7.48) to give the inverse
Chebyshev filter pole locations.

5. The pole locations are combined in (7.48) to give the final filter transfer
function denominator.

6. The zero locations are calculated from (7.47) and combined with the pole
locations to give the total transfer function (7.49) or (7.50).

Example 7.3. Design of an lnverse Chebyshev Low-Pass Filter
A third-order inverse Chebyshev low-pass filter is desired with a maximum

allowed stop-band ripple of d = 0.1 or b = 20 dB. This value corresponds to an E

of 0.100504 and, together with N = 3, results in a v, of 0.99774. The scale factors
are sinh(vo) = 1.171717 and cosh(u,) = 1.540429. The prototype Chebyshev
filter transfer function is

The zeros are calculated from (7.47), and the poles of the prototype are inverted
to give, from (7.50), the desired inverse Chebyshev filter transfer function

The frequency response of this filter is shown in Fig. 7.12, and the locations of
the poles and zeros are shown in Fig. 7.13.

7.2.7 Elliptic Function Filter Properties

In this section a design procedure is developed that uses a Chebyshev error
criterion in both the pass band and the stop band. This is the fourth possible
combination of Chebyshev and Taylor series approximations in the pass band
and the stop band. The resulting filter is called an elliptic functionfilter, because
elliptic functions are normally used to calculate the pole and zero locations. It is
also sometimes called a Cauer filter or a rational Chebyshev filter, and it has

7 . 2 Classical Analog Low-Pass Filter Approximations 185

FIGURE 7.1 2 . Example inverse Chebyshev filter frequency response.

FIGURE 7.13 . Pole and zero locations in the s plane for the example inverse Chebyshev filter
transfer function.

equal ripple approximation error in the pass band and the stop band.7.'s,'9.23
The error criteria of the elliptic function filter are particularly well suited to

the way specifications for filters are often given. Hence, of the four classical filter
design methods, elliptic function filter design usually gives the lowest-order filter
for a given set of specifications. Unfortunately, the design of this filter is the most
complicated. But because it is so efficient, some understanding of the mathema-
tics behind the design is worthwhile.

This section sketches an outline of the theory of elliptic function filter design.
One should'simply accept the details and properties of the elliptic functions
themselves and concentrate on understanding the overall picture. A more
complete development is available in references 7, 17 and 23. Straightforward

186 Design of Infinite Impulse-Response Filters

design of elliptic function filters can be accomplished by skipping this section
and going directly to Section 7.2.8 and Program 9 in the appendix.

Because the pass-band and stop-band approximations are over the entire
bands, a transition band between the two must be defined. Using a normalized
pass-band edge, we define the bands by

O , < w 6 1 (pass band),
1 < w < o, (transition band), (7.57)

o, < o 6 oo (stop band).

See Fig. 7.14.
The characteristics of the elliptic function filter are best described in terms of

the four parameters that specify the frequency response:

1. The maximum variation or ripple in the pass band 6,.
2. The width of the transition band (o, - 1).
3. The maximum response or ripple in the stop band 6,.
4. The order of the filter N.

The result of the design is that for any three given parameters, the fourth is

W

FIGURE 7.14. Elliptic function filter frequency response.

7.2 Classical Analog Low-Pass Filter Approximations 187

minimum. This description of a filter frequency response is very flexible and
powerful.

The form of the frequency-response function is a generalization of that for the
Chebyshev filter:

where

with F(s) being the prototype analog filter transfer function similar to (7.2). G(o)
is a rational function that approximates zero in the pass band and infinity in the
stop band. The definition of this function is a generalization of the definition of
the Chebyshev polynomial.

Elliptic Functions
To develop analytical expressions for equiripple rational functions, we outline
an interesting class of transcendental functions, called the Jacobian elliptic
functions. These functions can be viewed as a generalization of the normal
trigonometric and hyperbolic functions. The elliptic integral of the first kind2' is
defined as

The trigonometric sine of the inverse of this function is defined as the Jabocian
elliptic sine of u with modulus k and is denoted

sn(u, k) = sin(+(u, k)). (7.60)

A special evaluation of (7.59) is known as the complete elliptic integral
K = ~(7~12, k). It can be shownZ1 that sn(u) and most of the other elliptic
functions are periodic with periods 4K if u is real. Hence, K is also called the
quarter period. Figure 7.15 is a plot of sn(u, k) for several values of the modulus k.
For k = 0, sn(u,O) = sin(u). As k approaches 1 , sn(u, k) looks like a "fat" sine
function. For k = 1, sn(u, 1) = tanh(u) and is not periodic.

The quarter period or complete elliptic integral K is a function of the
modulus k and is illustrated in Fig. 7.16. For a modulus of zero the quarter
period is K = 4 2 , and it does not increase much until k approaches 1. It then
increases rapidly and goes to infinity as k goes to 1.

Another parameter is the complementary modulus k', defined by

I I I I I

0
k

FIGURE 7.16. The complete elliptic integral versus the modulus k.

7.2 Classical Analog Low-Pass Filter Approximations 189

where we assume 0 < k, k' < 1; k, k' real. The complete elliptic integral of the
complementary modulus is denoted K t .

Other elliptic functions that are rather obvious generalizations are

cn(u, k) = cos(4(u, k)),
SC(U, k) = tan(& k)),
CS(U, k) = ctn(4(u, k)),
nc(u, k) = sec(4(u, k)),
ns(u, k) = csc(4(u, k)).

There are six other elliptic functions that have no trigonometric counterpart^.^'
A needed one is

dn(u, k) = J1 - k2sn2(u, k). (7.63)

Many interesting properties of the elliptic functions exist.21 They obey a large
set of identities such as

They have derivatives that are elliptic functions. For example,

d
- sn(u, k) = cn(u, k)dn(u, k). (7.65)
du

The elliptic functions are the solutions of a set of nonlinear differential equations
of the form

Some of the most important properties for the elliptic functions are as functions
of a complex variable. For a purely imaginary argument

sn(jv, k) = jsc(v, k'), cn(jv, k) = nc(u, k'). (7.66)

These relations indicate that the elliptic functions, in contrast to the circular and
hyperbolic trigonometric functions, are periodic in both the real and imaginary
parts of the argument, with periods related to K and K', respectively.

One particular value assumed by the sn function that is important in creating
a rational function is

190 Design of Infinite Impulse-Response Filters

The Cheb yshev Rational Function
The rational function needed in (7.58) is sometimes called a Chebyshev rational
function because of its equiripple properties. It can be defined in terms of two
elliptic functions with moduli k and k, by

G(w) = sn(n sn - '(w, k), k,). (7.68)

In terms of the intermediate complex variable 4, G(w) and w become

G(w) = sn(n4, k,), w = sn(4, k). (7.69)

It can be ~ h o w n ~ . ' ~ that G(w) is a real-valued rational function if the parameters
k, k,, and n take on special values. Note the similarity of the definition of G(w) to
the definition of C,(w) in (7.20) and (7.21). In this case, however, n is not
necessarily an integer and is not the order of the filter. Requiring that G(w) be a
rational function requires an alignment of the imaginary periods7+l7 of the two
elliptic functions in (7.69). It also requires alignment of an integer multiple of the
real periods, The integer multiplier is denoted by N and is the order of the
resulting filter.7*'7 These two requirements are stated by the following very
important relations:

nK' = K ; alignment of imaginary periods,
(7.70)

nK = NK, alignment of a multiple of the real periods,

When the parameter n is removed, (7.70) become

K'K, '

These relationships are central to the design of elliptic function filters. N is an
odd integer that is the order of the filter. For N = 5 the resulting rational
function is shown in Fig. 7.17.

This function is the basis of the approximation necessary for the optimal filter 8
frequency response. It approximates zero over the frequency range - 1 < w < 1
by an equiripple oscillation between + 1 and - 1. It also approximates infinity
over the range Ilk < JwJ < ar, by a reciprocal oscillation that keeps
(F(w)l > llk,. The zero approximation is normalized in both the frequency
range and the F(w) values to unity. The infinity approximation has its frequency
range set by the choice of the modulus k, and the minimum value of IF(to)(is set
by the choice of the second modulus k,.

If k and k, are determined from the filter specifications, they in turn
determine the complementary moduli k' and k;, which altogether determine the
four values of the complete elliptic integral K needed to determine the order N in
(7.71). In general, this sequence of events will not produce an integer. In practice,

7.2 Classical Analog Low-Pass Filter Approximations 191

FIGURE 7.1 7. Fifth-order elliptic rational function.

however, the next larger integer is used, and either k or k, (or perhaps both) is
altered to satisfy (7.71).

In addition to the two-band equiripple characteristics, G(o) has another
interesting and valuable property. The pole and zero locations have a reciprocal
r e l a t i o n ~ h i p ~ ~ . ~ ~ that can be expressed by

1
where w, = - .

k

This property states that if the zeros of G(w) are located at a,,, the poles are
located at

If the zeros are known, the poles are known, and vice versa. A similar relation
exists between the points of zero derivatives in the 0 to 1 region and those in the
llk to c~ region.

The zeros of G(w) are found from (7.69) by requiring

G(w) = sn(n4, k,) = 0,

which implies

192 Design of Infinite Impulse-Response Filters

From (7.69) this relation gives

Using (7.70), we can reformulate (7.73) so that n and K , are not needed. For N
odd the zero locations are

We find the pole locations from these zero locations by using (7.72). The
locations of the zero-derivative points are given by

in the 0 to 1 region, and the corresponding points in the llk to co region are
found from (7.72).

These relations assume that N is an odd integer. A modification for even N is
necessary. For proper alignment of the real periods the original definition of
G(w) in (7.69) is changed to

which, for N even, gives for the zero locations

The even and odd N cases of (7.74) and (7.77) can be combined to give

for

0,2, 4, . . . , N - 1 for N odd,
i = (

1, 3, 5, . . . , N - 1 for N even,

with the poles determined from (7.72).
Note that it is possible to determine G(w) from k and N without explicitly

using k, or n. Values for k, and n are implied by the requirements of (7.70) or
(7.71).

i

7.2 Classical Analog Low-Pass Filter Approximations 193

Zero Locations
The locations of the zeros of the filter transfer function F(o) are easily found,
since they are the same as the poles of G(o), given in (7.78).

for

0 , 2 , 4 , . . . , N - 1 Nodd,
i = (1 3 , 5 , . 1 Neven.

These zeros are purely imaginary and lie on the o axis.

Pole Locations
The pole locations are somewhat more complicated to find. We use an approach
similar to that used for the Chebyshev filter in (7.25). F(s) becomes infinite when

Using (7.69) and the periodicity of sn(u, k), we then get

Define v , to be the second term in (7.81) by

which is similar to (7.29) for the Chebyshev case. Using the properties of sn of an
imaginary variable and (7.71), we obtain

vo = (L) sc- ' (i, It,).
NKl

194 Design of Infinite Impulse-Response Filters

The poles are now found from (7.69), (7.81). and (7.82) to be

This equation can be more clearly written by using the summation formula2' for
the elliptic sine function:

cn dn sn' cn' + j sn dn'
S . =
Pl 1 - dn2 snf2

where

sn = sn($, k) , cn = c n G , k) , dn = dn --, k , (:) (7.85)
sn' = sn(u,, k'), cn' = cn(u,, k'), dn' = dn(u,, k'),

for

N odd: i = 0, 2 , 4 , . . . ,
N even: i = 1 , 3, 5,

The theory of Jacobian elliptic functions can be found in references 17 and 21
and its application to filter design in references 7 , 17-19, and 23. The best
techniques for calculating the elliptic functions seem to use the arithmetic-
geometric mean; efficient algorithms are presented in reference 22. A design
program is given in reference 23 and the versatile FORTRAN Program 9 , which
is easily related to the theory in this chapter, is given in the appendix.

The transfer function F(s) pole locations can also be found by obtaining the
zeros from (7.79) and finding G(w) by using the reciprocal relation of the poles
and zeros (7.72). F(s) is constructed from G(w), E from (7.58), and the poles are
found by a root-finding algorithm. Another possibility is to find the zeros from
(7.79) and the poles from the methods for finding a Chebyshev pass band from
arbitrary zero^."^^^^^^ These approaches avoid calculating r , by (7.82) or
determining k from KIK', as is described in reference 23. The efficient algorithms
for evaluating the elliptic functions and the common use of powerful computers
make these alternatives less attractive now.

Summary

This section outlined the basic properties of the Jacobian elliptic functions and
gave the necessary conditions for an equiripple rational function to be defined in
terms of them. This rational function was then used to construct a filter transfer
function with equiripple properties. Formulas were derived to calculate the pole

7.2 Classical Analog Low-Pass Filter Approximations 195

and zero locations for the filter transfer functions and to relate design
specifications to the functions. These formulas require the evaluation of elliptic
functions and are implemented in Program 9.

7.2.8 Elliptic Function Filter Design Procedures

The equiripple rational functioil G(w) is used to describe an optimal frequency-
response function F(jw) and to design the corresponding filter. The squared
magnitude frequency-response function from (7.58) is

with G(w) defined by (7.68) and (7.76), and E a parameter that controls the pass-
band ripple. The plot of this function for N = 5 illustrates the relation to the
various specification parameters. Figure 7.18 shows that the pass-band ripple is
measured by dl, the stop-band ripple by 62, and the normalized transition band
by w,. The previous section showed in (7.72) that

FIGURE 7.18. Elliptic-function filter frequency response.

62

- I I;
Oo

I I -1

Pass band Transit~on Stop band
band

196 Design of Infinite Impulse-Response Filters

which means that the width of the transition band determines k. Remember that
in this developement we have assumed a pass-band edge normalized to unity.
For the unnormalized case the pass-band edge is w,, and the stop-band edge
becomes

The stop-band performance is described in terms of the ripple 8, normalized to a
maximum pass-band response of unity or in terms of the attenuation b in the
stop band expressed in positive dB, if we assume a maximum pass-band
response of zero dB. The stop-band ripple and attenuation are determined from
(7.86) and Fig. 7.18 to be

Rearranging gives k , in terms of the stop-band ripple or attenuation

The order N of the filter depends on k and k , , as shown in (7.71). Equations
(7.87), (7.89), and (7.71) determine the relation of the frequency-response
specifications and the elliptic function parameters. The location of the transfer
function poles and zeros must then be determined.

Because of the required relationships of (7.71) and because the order N must
be an integer, the pass-band ripple, stop-band ripple, and transition band
cannot be independently set. Several straightforward procedures can be used
that will a1w:ly- ~ieet two of the specifications and exceed the third.

The first desig-I step is generally the determination of the order N from the
desired pass-b; nd ripple 8,, the stop-band ripple a,, and the transition band
controlled by a),. The following formulas determine the moduli k and k , from
the pass-band ripple 6 , or its dB equivalent a and the stop-band ripple 6 , or its
dB attenuation equivalent b:

7.2 Classical Analog Low-Pass Filter Approximations 197

The order N is the smallest integer satisfying

KK;
N 2 ---- .

K'K I

This integer order N will not, in general, exactly satisfy (7.71)-that is, it will not
satisfy (7.93) with equality. Either k or k, must to recalculated to satisfy (7.71)
and (7.93). The various possibilities for this are developed here.

Methods for Meeting Specifications

A. Fixed-Order, Pass-Band Ripple, and Eonsition Band
Given N from (7.93) and the specifications dl, o,, and w,, we find the parameters
E and k from (7.90) and (7.92). From k the complete elliptic integrals K and K'
are ~ a l c u l a t e d . ~ ~ From (7.71) the ratio K/K' determines the ratio K;/K,. Using
numerical methods from references 21 and 23, we calculate k,, which gives the
desired dl, w,, and w, and minimizes the stop-band ripple 6, (or maximizes the
stop-band attenuation b).

Using these parameters, we calculate the zeros from (7.79) and the poles from
(7.84). Note that the zero locations depend not on E or k, but only on N and o,.
This dependence makes the tradeoff between stop band and pass band occur in
(7.91) and only affects the calculation of v, in (7.82).

This approach, which minimizes the stop-band ripple, is used in the IIR filter
design program in the appendix.

B. Fixed-Order, Stop-Band Rejection, and Tvansition Band
Given N from (7.93) and the specifications 6,, (I),, and w,, we find the parameter
k from (7.92). From k the complete elliptic integrals K and K' are ~ a l c u l a t e d ~ ~ .
From (7.71) the ratio K/K' determines the ratio K;/K,. Using numerical
methods from references 21 and 23, we calculate k,. From k, and 6,, E and 6, are
found from

and

This set of parameters gives the desired a,, w,, and stop-band ripple and
minimizes the pass-band ripple. The zero and pole locations are found as in A.

C. Fixed-Order, Stop-Band, and Pass-Band Ripple
Given N from (7.93) and the specifications 6,, 6,, and either w, or w,, we find the

198 Design of Infinite Impulse-Response Filters

parameters E and k , from (7.90) and (7.91). From k , the complete elliptic
integrals K , and K', are c a l c ~ l a t e d ~ ~ . From (7.71) the ratio K , / K ' , determines
the ratio K r / K . Using numerical methods from references 21 and 23, we calculate
k which gives the desired pass-band and stop-band ripple and minimizes the

q
transition band width. The pole and zero locations are found as before.

I
D. An Approximation
After the order N is found from (7.931, in many filter design programs the design
proceeds with the original E, k, and k , , even though they do not satisfy (7.71).
The resulting design has the desired transition band, but pass-band and stop-
band ripple are smaller than specified. This procedure avoids calculating the
modulus k or k , from a ratio of complete elliptic integrals, which was necessary
in all three cases before, but produces results that are difficult to predict exactly.

Example 7.4. Design ofa Third-Order Elliptic Function Low-Pass Filter
A low-pass elliptic function filter is desired with a maximum pass-band ripple

of 6, = 0.1 or a = 0.91515 dB, a maximum stop-band ripple of 6, = 0.1 or
b = 20dB rejection, and a normalized stop-band edge of o, = 1.3 rad/s. The
first step is to determine the order of the filter.

From o, we calculate the modulus k and then, using the relations in (7.92), the
complementary modulus. Special numerical algorithms illustrated in Program 9
are then used to find the complete elliptic. integrals K and K'."

From d l , we calculate E , using (7.90), and from E and d 2 , we calculate k , from
(7.9 1). We then determine k ; , K , , and K',:

E = 0.4843221 as for the Chebyshev example,
k , = 0.0486762, k', = 0.9988 146,

K , = 1.571727, K ; = 4.4108715.

The order is obtained from (7.71) by calculating

K K ; -- - 3.0541,
K'K ,

which is close enough to 3 to set N = 3. Rather than recalculate k and k , , we use
the already calculated values, as discussed in design method D. We find the zeros
from (7.79), using only N and k determined earlier.

7.2 Classical Analog Low-Pass Filter Approximations 199

Finding the pole locations requires calculating v0 from (7.82), which is
somewhat complicated. It is carried out with the algorithms in Program 9.

Using the values of vO, k, and N, we calculate the elliptic functions in (7.85):

sn' = .557986, cn' = 0.829850, dn' = 0.934281,

which for the single, real pole corresponding to i = 0 in (7.84) gives

For the complex-conjugate pair of poles corresponding to i = 2, the other
elliptic functions in (7.85) are

which gives, from (7.84),

for the poles. The complete transfer function is

The frequency response of this filter is in Fig. 7.19, and the locations of the poles
and zeros are in Fig. 7.20. This design should be compared to the Chebyshev and
inverse Chebyshev designs.

7.2.9 Optimality of the Four Classical Filter Designs

It is important in filter design to choose the appropriate type. Since the filters are
optimal in all cases, it is necessary to understand in what sense they are optimal.

The classical Butterworth filter is optimal in the sense that it is the best
Taylor series approximation to the ideal low-pass filter magnitude at both
o = 0 and o = co.

The Chebyshev filter gives the smallest maximum magnitude error over the
entire pass band of any filter that is also a Taylor series approximation at
o = co to the ideal magnitude characteristic.

The inverse Chebyshev filter is a Taylor series approximation to the ideal
magnitude response at o = 0 and minimizes the maximum error in the
approximation to zero over the stop band. Or we can say it maximizes the
minimum rejection of the filter over the stop band.

200 Design of Infinite Impulse-Response Filters

Pass band Transition stopband
band

FIGURE 7.19. Example elliptic function filter frequency response.

I s plane

FIGURE 7.20. Pole and zero locations in the s plane for the example elliptic function filter.

The elliptic function filter (Cauer filter) considers the four parameters of the
filter: the pass-band ripple, the transition band width, the stop-band ripple, and
the order of the filter. For given values of any three of the four, the fourth is
minimized.

Remember that all four of these filter designs are magnitude approximations
and do not address the phase frequency response or the time-domain character-
istics. For most designs the Butterworth filter has the smoothest phase curve,
followed by the inverse Chebyshev filter, Chebyshev filter, and elliptic function
filter.

Recall that in addition to the four filters described in this section, the more

7.2 Classical Analog Low-Pass Filter Approximations 201

general Taylor series method described in (7.8) allows arbitrary zero locations to
be specified but retains the optimal character at o = 0. A design similar to this
can be obtained by replacing o by l /o , which allows setting IF(o)I2 equal to
unity at arbitrary frequencies in the pass band and having a Taylor series
approximation to zero at o = co. Similar modifications of the Chebyshev filters
are covered in references 24 and 25.

These basic normalized low-pass filters can have the pass-band edge moved
from unity to any desired value by a simple change of frequency variable: k o
replace with o . They can be converted to high-pass, bandpass, or band-rejection
filters by various changes, such as replacing o by k/o or by a o + blo. In all of
these cases the optimality is maintained, because the basic low-pass approxi-
mation is to a piecewise constant ideal. An approximation to a nonpiecewise
constant ideal, such as a differentiator, may not be optimal after a frequency
change of variables.

In some cases, especially where time-domain characteristics are important,
ripples in the frequency response cause irregularities, such as echoes in the time
response. For that reason the Butterworth and Chebyshev I1 filters are more
desirable than their frequency response along might indicate. A fifth approxi-
mation has been developedz0 that is similar to the Butterworth. It requires qot a
Taylor series approximation at o = 0 but only that the response monotonically
decrease in the pass band, thus giving a narrower transition region than the
Butterworth but without the ripples of the Chebyshev.

7.2.10 Frequency Transformations

In addition to the low-pass frequency response, other basic ideal responses are
often needed in practice. The ideal high-pass filter rejects signals with freq-
uencies below a certain value and passes those with frequencies above that
value. The ideal bandpass filter passes only a band of frequencies, and the ideal
band-rejection filter completely rejects a band of frequencies. These ideal
frequency responses are illustrated in Fig. 7.21.

This section presents a method for designing the three new filters by using a
frequency transformation on the basic low-pass design. When used on the four
approximations covered in Sections 7.2.1 through 7.2.8, they preserve optim-
ality. This procedure is used in the FREQXFM() subroutine of Program 9.

The High-Pass Filter
The frequency response illustrated in Fig. 7.21b can be obtained from that in
7 . 2 1 ~ by replacing the complex frequency variable s in the transfer function by
11s. This change of variable maps zero frequency to infinity, maps unity into
unity, and maps infinity to zero. It turns the complex s plane inside out and
leaves the unit circle alone.

In the design procedure the desired band edge w, for the high-pass filter is
mapped by l/oo to give the band edge for the prototype low-pass filter. This
low-pass filter is next designed by one of the optimal procedures already covered

202 Design of Infinite Impulse-Response Filters

(C) (d)

FIGURE 7.21. The four basic ideal frequency responses. (a) Ideal low pass; (b) ideal high pass; (c)
ideal bandpass; (d) ideal band rejection.

and then converted to a high-pass transfer function by replacing s by 11s. If an
elliptic function filter approximation is used, both the pass-band edge o, and the
stop-band edge o, are transformed. Because most optimal low-pass design
procedures give the designed transfer function in factored form from explicit
formulas for the poles and zeros, the transformation can be performed on each
pole and zero to give the high-pass transfer function in factored form.

The Bandpass Filter
To convert the low-pass filter of Fig. 7 . 2 1 ~ into that of 7.21c, we need a more
complicated frequency transformation. To reduce confusion, we denote the
complex frequency variable for the prototype analog filter transfer function by p
and that for the transformed analog filter by s. The transformation is given by

This change of variables doubles the order of the filter, maps the origin of the s
plane to +jo,, and maps + co to 0 and co. The entire w axis of the prototype
response is mapped between 0 and + co on the transformed responses. It is also
mapped onto the left-half-axis between - co and 0. See Fig. 7.22.

For the transformation to give -ap = (o: - o;)/02 and
up = (0: - 06)/03, the "center" frequency o, must be

However, because -a, = (w: - o;)o, and o, = (oi - 0,2)/04, the center
frequency must also be

7.2 Classical Analog Low-Pass Filter Approximations 203

FIGURE 7.22. Low-pass to bandpass frequency transformation.

This means that only three of the four band-edge frequencies (w,, w,, w,, and
w,) can be independently specified. Normally, 0.1, is determined by 0.1, and w,,
which then specify the prototype pass-band edge by

Using the same wO, we set the stop-band edge by either w, or a,, whichever
gives the smaller w,.

The finally designed bandpass filter will meet both pass-band edges and one
transition bandwidth, but the other will be narrower than originally specified.
That is not a problem with the Butterworth or either of the Chebyshev
approximations because they have either pass-band edges or stop-band edges.
The elliptic function has both.

After we calculate the band edges for the prototype low-pass filter wp and/or
a,, we design the filter by one of the optimal approximation methods discussed
in this section or by any other means. Because most of these methods give the
pole and zero locations directly, they can be individually transformed to give the
bandpass filter transfer function in factored form. It is accomplished by solving
s2 - ps + w; from the original transformation to give

204 Design of Infinite Impulse-Response Filters

(a) Narrow-band filter (b) Wide-band filter

FIGURE 7.23. Pole and zero locations for a bandpass filter. (a) Narrow-band filter; (h) Wide-band
filter.

for the root locations. This equation gives two transformed roots for each
prototype root, which doubles the order as expected.

Examples of two third-order. bandpass, Chebyshev filter pole and zero
locations (after converting to a digital filter) on the z plane are shown in Fig.
7.23. The roots that result from transforming the real pole of an odd-order
prototype cause some complication in programming this procedure. Program 9
should be studied to understand how this is carried out.

The Band-Reject Filter
To design a filter that will reject a band of frequencies, we use a frequency
transformation of the form

on the prototype low-pass filter. This transforms the origin of the p plane into
both the origin and infinity of the s plane. It maps infinity in the p plane into jo,
in the s plane. See Fig. 7.24.

FIGURE 7.24. Low-Pass to band-rejection frequency transformation.

7.2 Classical Analog Low-Pass Filter Approximations 205

Similar to the bandpass case, the transformation must give
-cop = 04/(o; - w:) and o, = o,(o; - o:). A similar relation of o, to w, and
w, requires that the center frequency o, must be

As before, only three of the four band-edge frequencies can be independently
specified. Normally, o, is determined by o, and o,, which then specify the
prototype pass-band edge by

Using the same w,, we set the stop-band edge by either w, or w3, whichever
gives the smaller w,.

The finally designed bandpass filter will meet both pass-band edges and one
transition bandwidth, but the other will be narrower than originally specified.
This occurs not with the Butterworth or either Chebyshev approximation but
only with the elliptic function.

After we calculate the band edges for the prototype low-pass filter w, and/or
o,, we design the filter. The poles and zeros of this filter are individually
transformed to give the band-rejection filter transfer function in factored form. It
is carried out by solving s2 - (l/p)s + w; to give for the root locations

Examples of two third-order band-reject Chebyshev filter pole and zero
locations (after converting to a digital filter) on the s plane are shown in Fig.
7.25.

A more complicated set of transformations could be developed by using a
general map of s = f (s) with a higher order. Several pass bands or stop bands
could be specified, but the calculations become fairly complicated.

Although this method of transformation is a powerful and simple way for
designing bandpass and band-reject filters, it does impose certain restrictions. A
Chebyshev bandpass filter will be equiripple in the pass band and maximally flat
at both zero and infinity, but the transformation forces the degree of flatness at
zero and infinity to be equal. The elliptic function bandpass filter will have the
same number of ripples in both stop bands even if they are of very different
widths. These restrictions are usually considered mild when compared with the
complexity of alternative design methodr..

206 Design of Infinite Impulse-Response Filters

(a) Narrow-band filter (b) Wide-band filter

FIGURE 7.25. Pole and zero locations for a band rejection filter. (a) Narrow-band filter; (b) wide-
band filter.

7.3. CONVERSION OF ANALOG-TO-DIGITAL
TRANSFER FUNCTIONS

For mathematical convenience the four classical IIR filter transfer functions
were developed in Section 7.2 in terms of the Laplace transform rather than the z
transform. The prototype Laplace transform transfer functions are descriptions
of analog filters. In this section they are converted to z transform transfer
functions for implementation as IIR digital filters.

Of the several methods described over the history of digital filters for
converting analog systems to digital systems, two have proven to be useful for
most applications. The first is the impulse-invariant method, which gives a digital
filter with an impulse response exactly equal to samples of the prototype analog
filter. The second method uses a frequency mapping to convert the analog filter
to a digital filter. It has the desirable property of preserving the optimality of the
four classical approximations developed in the last section. This section
develops the theory and design formulas to implement both of these conversion
approaches.

7.3.1 The Impulse-Invariant Method

Although the transfer functions in Section 7.2 were designed with criteria in the
frequency domain, the impulse-invariant method converts them into digital
transfer functions by a time-domain constraint.'- The digital filter designed by
the impulse-invariant method is required to have an impulse response exactly
equal to equally spaced samples of the impulse response of the prototype analog
filter. If the analog filter has a transfer function F(s) with an impulse response
f (t) , the impulse response of the digital filter h(n) is required to match the samples
off (t) . For samples at intervals of T seconds the impulse response is

7.3 Conversion of Analog-to-Digital Transfer Functions 207

The transfer function of the digital filter is the z transform of the impulse
response of the filter,

The transfer function of the prototype analog filter is always a rational function,

where B(s) is the numerator polynomial with roots that are the zeros of F(s), and
A(s) is the denominator with roots that are the poles of F(s). If F(s) is expanded in
terms of partial fractions, it can be written as

The impulse response of this filter is the inverse Laplace transform of (7.103),
which is

Sampling this impulse response every T seconds gives

The basic requirement of (7.102) gives

which is clearly a rational function of z and is the transfer function of the digital
filter, which has samples of the prototype analog filter as its impulse response.

This method has its requirements set in the time domain, but the frequency
response is important. In most cases the prototype analog filter is one of the
classical types from Section 7.2, which is optimal in the frequency domain. If the
frequency response of the analog filter is denoted by F (j w) and the frequency
response of the digital filter designed by the impulse-invariant method is H(w), it

208 Design of Infinite Impulse-Response Filters

can be shown, in a development similar to that used for the sampling theorem,
that

The frequency response of the digital filter is a periodically repeated version of
the frequency response of the analog filter. This produces an overlapping of the
analog response. Thus optimality is not preserved in the same sense in which the
analog prototype was optimal. It is a similar phenomenon to the aliasing that
occurs when sampling a continuous-time signal to obtain a digital signal in A/D
conversion. If F(jw) is an analog low-pass filter that goes to zero as o goes to
infinity, the effects of the folding can be made small by high sampling rates (small
T).

The impulse-invariant design method can be summarized in the following
steps:

1. Design a prototype analog filter with transfer function F(jo).
2. Make a partial fraction expansion of F(,jw) to obtain the N values for K i

and si for (7.100).
3. Form the digital transfer function H(z) from (7.104) to give the desired

design.

The characteristics of the designed filter are the following:

1. It has N poles, the same as the analog filter.
2. It is stable if the analog filter was stable. We see this from the change of

variables in the denominator of (6.70), which maps the left-half of the s
plane inside the unit circle in the z plane.

3. The frequency response is a folded version of the analog filter, and the
optimal properties of the analog filter are not preserved.

4. The cascade of two impulse-invariant designed filters is not impulse-
invariant with the cascade of the two analog prototypes. In other words,
the filter must be designed in one step.

This method is sometimes used to design digital filters, but because the
relation between the analog and digital systems is specified in the time domain, it
is more useful in designing a digital simulation of an analog system. Unfor-
tunately, tht: properties of this class of filters depend on the input. If a filter is
designed so that its impulse response is the sampled impulse response of the
analog filter, its step response will not be the sampled step response of the analog
filter.

A step-invariant filter can be designed by first multiplying the analog filter
transfer function F(s) by l/s, which is the Laplace transform of a step function.

7.3 Conversion of Analog-to-Digital Transfer Functions 209

(a) The Butterworth Lowpass Prototype Analog Filter

(b) The Digital Filter Designed by the Impulse Invariant Method

FIGURE 7.26. Impulse-invariant design of a Butterworth filter. (a) Butterw-rth low-pass
prototype analog filter; (b) digital filter designed by the impulse-invariant method.

This product is then expanded in partial fractions just as F(s) was in (7.100), and
the same substitution is made as in (7.104), giving a z transform. After the z

transform of a step is removed, the digital filter has the step-invariant property.
This idea can be extended to other input functions, but the impulse-invariant
version is the most common.

Another modification to the impulse-invariant method is known as the
matched z transform, covered in reference 1, but it is less useful.

An example of a Butterworth low-pass filter used to design a digital filter by
the impulse-invariant method is shown in Fig. 7.26. Note that the frequency
response does not go to zero at the highest frequency o = n. We can make it as
small as we like by increasing the sampling rate, but this is more expensive to
implement. Because the frequency response of the prototype analog filter for an
inverse Chebyshev or elliptic function filter does not necessarily go to zero as w
goes to infinity, the effects of folding on the digital frequency response are poor.
No amount of sampling rate increase will change that. The same problem exists
for a high-pass filter. Therefore care must be exercised in using the impulse-
invariant design method.

7.3.2 The Bilinear Transformation

A second method for converting an analog prototype filter into a desired digital
filter is the bilinear transformation. This method is entirely a frequency-domain
method, and, as a result, some of the optimal properties of the analog filter are
preserved. As was the case with the impulse-invariant method, the time interval
is not normalized to unity but is explicitly denoted by the sampling interval T
with units of seconds. The bilinear transformation is a change of variables (a
mapping) that is linear in the numerator and the The usual

210 Design of Infinite Impulse-Response Filters

form is

The z transform transfer function of the digital filter H(z) is obtained from the
Laplace transform transfer function F(s) of the prototype filter by substituting
for s the bilinear form of (7.106).

This operation can be reversed by solving (7.106) for z and substituting this into
H(z) to obtain F(s). This reverse operation is also a bilinear transformation of the
form

To consider the frequency response, we evaluate the Laplace variable s on the
imaginary axis and the z transform variable z on the unit circle. We set

s = ju and z = e jWT, (7.109)

which gives the relation of the analog frequency variable u to the digital
frequency variable w, from (7.109) and (7.106), as

The bilinear transform maps the infinite imaginary axis in the s plane onto
the unit circle in the z plane. It maps the infinite interval of - co < u < co of the
analog frequency axis onto the finite interval - n/2 < w < 7112 of the digital
frequency axis. See Figs. 7.27 and 7.28. There is no folding or aliasing of the
prototype frequency response, but there is a compression of the frequency axis
that becomes extreme at high frequencies. This compression is shown in Fig.
7.28 from the relation (7.1 10). Near zero frequency, the relation of u and w is
essentially linear. The compression increases as the digital frequency w nears
n/2. This nonlinear compression is called frequency warping. The conversion of
F(s) to H(z) with the bilinear transformation does not change the values of the
frequency response, but it changes the frequencies where the values occur.

In the design of a digital filter the effects of the frequency warping must be
taken into account. The prototype filter frequency scale must be prewarped so
that after the bilinear transform the critical frequencies are in the correct plac

The prototype analog filter

Bilinear map

1

0
0 *

W
IT - 2rr -
T T

FIGURE 7.27. The frequency map of the bilinear transform

W

FIGURE 7.28. Relation of analog and digital frequencies

21 2 Design of Infinite Impulse-Response Filters

This prewarping or scaling of the prototype frequency scale is done by replacing
s with Ks. Because the bilinear transform is also a change of variables, both can
be performed in one step.

If the critical frequency for the prototype filter is u, and the desired critical
frequency for the digital filter is w, , the two frequency responses are related by

F(ju,) = H(w,) = F*. (7.1 1 1)

The prewarping scaling is given by

2
uo = - tan (y).

T

Combining the prewarping scale and the bilinear transformation gives

2 K
uo = - tan (F).

T

Solving for K and combining with (7.106) give

All of the optimal filters developed in Section 7.2 and most other prototype
filters are designed with a normalized critical frequency u , = 1 . Recall that w , is
in radians per second. Most specifications are given in terms of frequency f in
Hertz, which is related to w or u by

Care must be exercised with the elliptic function filter when there are two critical
frequencies that determine the transition region. Both frequencies must be
prewarped.

The characteristic of the bilinear transform are the following:

1. The order of the digital filter is the same as the prototype filter.
2. The left-half of the s plane is mapped into the unit circle on the z plane,

which means stability is preserved.
3. Optimal approximations to piecewise constant prototype filters, such as

the four cases in Section 7.2, transform into optimal digital filters.
4. The cascade of sections designed by the bilinear transform is the same as

that obtained by transforming the total system.

7.3 Conversion of Analog-to-Digital Transfer Functions 21 3

The bilinear transform is probably the most frequently used method for
converting a prototype Laplace transform transfer function into a digital
transfer function. It is the one used in most popular filter design programs,10-12
because optimality is preserved. The maximally flat prototype is transformed
into a maximally flat digital filter. This property only holds for approximations
to piecewise constant, ideal frequency responses, because the frequency warping
does not change the shape of a constant. If the prototype is an optimal
approximation to a differentiator or to a linear-phase characteristic, the bilinear
transform will destroy the optimality. Those approximations have to be made
directly in the digital frequency domain.

Example 7.5. Design with The Bilinear Transformation
To illustrate the bilinear transformation, we convert the third-order Butter-

worth low-pass filter designed in Example 7.1 into a digital filter. The prototype
filter transfer function is

The prototype analog filter has a pass-band edge at uo = 1. We assume a data
rate of 1000 samples/s, corresponding to T = 0.001 seconds. If the desired digital
passband edge is fo = 200 Hz, then oo = (27~)(200) rad/s, and the total pre-
warped bilinear transformation from (7.11 3) is

The digital transfer functionin (7.1 14) becomes

Note the locations of the poles and zeros in the z plane. Zeros at infinity in the s
plane always map into the z = - 1 point. The examples in Figs. 7.1 and 7.2
illustrate a third-order elliptic function filter designed with the bilinear
transform.

7.3.3 Frequency Transforma ions r
For the design of high-pass, bandpbss, and band-rejection filters, a particularly
powerful combination consists of using the frequency transformations described
in Section 7.2.10 together with the bilinear transformation. When using this
combination, be careful to scale the specifications properly. This scaling

21 4 Design of Infinite Impulse-Response Filters

procedure is illustrated by considering the steps in the design of a bandpass
filter:

1. First, the lower and upper digital band-edge frequencies are specified as o,
and o, or a,, o,, a,, and o, if an elliptic function approximation is used.

2. These frequencies are prewarped. Equation (7.1 12) is used to give the band
edges of the prototype bandpass analog filter.

3. These frequencies are converted into a single band edge o, or o, for the
Butterworth and Chebyshev approximations and into o, and w, for the
elliptic function approximation of the prototype low-pass filter by using
(7.97) and (7.98).

4. The low-pass filter is designed for this o, and/or o, by using one of the
four approximations in Sections 7.2.1 through 7.2.8 or some other method.

5. This low-pass analog filter is converted into a bandpass analog filter with
the frequency transformation (7.99).

6. The bandpass analog filter is then transformed into the desired bandpass
digital filter with the bilinear transformation (7.106).

This procedure is used in the design Program 9 in the appendix.
In the design of a bandpass elliptic function filter, four frequencies must be

specified: the lower stop-band edge, the lower pass-band edge, the upper pass-
band edge, and the upper stop-band edge. All four must be prewarped to the
equivalent analog values. A problem occurs when the two transition bands of
the bandpass filter are converted into the single transition band of the low-pass
prototype filter. In general, they will be inconsistent; therefore, the narrower of
the two transition bands should be used to specify the low-pass filter. The same
problem occurs in designing a band-rejection elliptic function filter. Program 9
should be studied to understand how this is carried out.

An alternative to the process of converting a low-pass analog filter into a
bandpass analog filter into a digital filter is to first convert the prototype low-
pass analog filter into a low-pass digital filter and then to make the conversion
into a bandpass filter. If the prototype digital filter transfer function is H,(z) and
the frequency transformation is f (z) , the desired transformed digital filter is
described by

Since the frequency responses of both H(z) and H,(z) are obtained by evaluating
them on the unit circle in the z plane, f (z) should map the unit circle onto the
unit circle (lzl = 1 If (z)l = 1). Both H(z) and H,(z) should be stable; therefore,
f (z) should map the interior of the unit circle into the interior of the unit circle
((zl < 1 =. I f(z)l < 1). If f (z) were viewed as a filter, it would be an all-pass filter

-7

7.3 Conversion of Analog-to-Digital Transfer Functions 21 5

with a unity magnitude frequency response of the form

The prototype digital low-pass filter is usually designed with band edges at
+n/2. Determining the frequency transformation then becomes the problem of
solving the n + 1 equations

for the unknown a, where i = 0, 1 ,2 , . . . , n and the wi are the band edges of the
desired transformed frequency response put in ascending order. The resulting
simultaneous equations have a special structure that allow a recursive solution.
Details of this approach can be found in reference 4.

This approach is extremely general and allows multiple pass bands of
arbitrary width. If elliptic function approximations are used, only one of the
transition bandwidths can be independently specified. If more than one pass
band or band rejection is desired, f (z) will be higher than second order, and
therefore the transformed transfer function H(f (z)) will have to be factored by a
root finder.

To illustrate the results of using transform methods to design filters, we give
three examples, which are designed with Program 9.

Example 7.6. Design of a Chebyshev High-Pass Filter
The specifications are given for a high-pass Chebyshev frequency response

with a pass-band edge at fb = 0.3 Hz with a sampling rate of 1 sample/s. The
order is set at N = 5 and the pass-band ripple at 0.91515dB. The transfer
function

The frequency-response plot is given in Fig. 7.29.

Example 7.7. Design of an Elliptic Function Batlrlpass Filter
This filter requires a bandpass frequency response with an elliptic function

approximation. The maximum pass-band ripple is 1 dB, the minimum stop-
band attenuation is 30dB, the lower stop-band edge f l = 0.19 Hz, the lower
pass-band edge f2 = 0.2 Hz, the upper pass-band edge f , = 0.3 Hz, and the
upper stop-band edge f , = 0.31 Hz, with a sampling rate of 1 sample/s. The
design program calculated a required prototype order of N = 5 and, therefore, a
total order of 10. Figure 7.30 shows the frequency-response plot.

FIGURE 7.29. Fifth-order Chebyshev highpass filter.

FIGURE 7.30. Tenth-order elliptic function bandpass filter.

7.3 Conversion of Analog-to-Digital Transfer Functions 21 7
8

FIGURE 7.31. Twenty second-order inverse Chebyshev band-rejection filter.

Example 7.8. Design of an Inverse Chebyshev Band-Rejection Filter
The specifications are given for a band-rejection inverse Chebyshev frequency

response with band edges at f, = 0.1 and 0.2 Hz with a sampling rate of 1
sample/s. The prototype order is set at N = 11, and the minimum stop-band
attenuation at 30 dB. The frequency-response plot is given in Fig. 7.31.

Summary

This section described the two most popular and useful methods for transform-
ing a prototype analog filter into a digital filter. The analog frequency variable is
used because literature on analog filter design exists, but, more imporantly,
many approximation theories are more straightforward in terms of the Laplace
transform variable than the z transform variable. The impulse-invariant method
is particularly valuable when time-domain characteristics are important. The
bilinear transform method is the most common when frequency-domain
performance is the main interest. The bilinear transformation warps the
frequency scale; therefore, the digital band edges must be prewarped to obtain
the necessary band edges for the analog filter design. Formulas that transform
the analog prototype filters into the desired digital filters and for prewarping
specifications were derived.

The use of frequency transformations to convert low-pass filters into high-

21 8 Design of Infinite Impulse-Response Filters

pass, bandpass, and band-rejection filters was discussed as a particularly useful
combination with the bilinear transformation. These transformations are
implemented in Program 9 and design examples from this program were shown.

In some rases no analytic results are possible, or the desired frequency
response is not piecewise constant. Transformation methods are then not
appropriate. Direct methods for these cases are developed in the next section.

7.4. DIRECT FREQUENCY-DOMAIN IIR
FILTER DESIGN METHODS

The preceding design methods have been based on designing an analog
prototype filter and then converting it to a digital filter. This approach is
appropriate for the class of approximations where analytic solutions are
possible; it is not appropriate for many others. The rest of this chapter develops
methods that directly design the desired digital filter. Most approaches are
extensions of methods used for FIR filters, but they are more complicated for the
IIR case where rational approximation rather than polynomial approximation
is being performed.

This section develops a frequency-sampling design method such that the
frequency response of the IIR filter will pass through the given samples of a
desired response. Since an IIR filter cannot have linear phase, the sampled
response must contain both magnitude and phase. The extension of the
frequency-sampling method to an LS error approximation is not as simple as for
the FIR filter. The method given here uses a criterion based on the equation
error rather than on the more common error between the actual and desired
frequency responses. Nevertheless, it is a useful noniterative design method.
Finally, a general discussion of iterative design methods for LS frequency-
response error is given.

7.4.1 Frequency-Sampling Design of IIR Filters

The method for calculating samples of the frequency response of an IIR filter
presented in Section 6.2 can be reversed to design a filter in much the same way
as it was for the FIR filter in Section 3.1. The z transform transfer function for an
IIR filter is

The frequency response of the filter is given by setting z = e-j", as shown in
Section 6.2. Using the notation

7.4 Direct Frequency-Domain IIR Filter Design Methods 21 9

we choose equally spaced samples of the frequency response so that the number
of samples is equal to the number of unknown coefficients in (7.116). These
L + 1 = M + N + 1 samples of this frequency response are given by

and can be calculated from the length-(L + 1) DFTs of the numerator and
denominator as given in (6.6).

where the indicated division is term by term for each value of k. Multiplication
of both sides of (7.1 19) by A, gives

If the length-(L + 1) inverse DFT of H , is denoted by the length-(L + 1)
sequence h,, equation (7.120) becomes cyclic convolution, which can be
expressed in matrix form by

Note that the h, in (7.121) are not the impulse-response values of the filter as in
(6.2). A more compact matrix notation of (7.121) is

where H is (L + 1) by (L + I), b is length (M + I), and a is length (N + 1).
Because the lower L - N terms of the right-hand vector of(7.121) are zero, the H
matrix can be reduced by deleting the rightmost L - N columns to give Ho,
which transforms (7.122) to

220 Design of Infinite Impulse-Response Filters

Because the first element of a is 1 , it is partitioned to remove the unity term, and
the remaining length-n vector is denoted a*. The simultaneous equations
represented by (7.123) are uncoupled by further partitioning of the H matrix, as
shown in

where H , is (M + 1) by (N + l) , h, is length (L - M), and H , is (L - M) by N .
The lower L - M equations are written

which must be solved for a*. The upper M + 1 equations of (7.124) are written

which allows b to be calculated.
If L = N + M , H , is square. If H , is nonsingular, (7.125) can be solved

exactly for the denominator coefficients in a*, which are augmented by the unity
term to give a. From (7.126) we find the numerator coefficients in b.

Note that any order numerator and denominator can be prescribed. If the
filter is an FIR filter, a is unity and a* does not exist. Under these conditions
(7.126) states that b, = h,, which is one of the cases of FIR frequency sampling
covered in Section 3.1. Also note that there is no control over the stability of the
designed filter for this method.

Summary

This section developed and analyzed an interpolation design method. The
frequency-domain specifications were converted to the time domain by the
DFT. A matrix partitioning allowed the solution for the numerator coefficients
to be uncoupled from the solution of the denominator coefficients. The DFT
prevents the possibility of unequally spaced frequency samples, which was
possible for FIR filter design. C

The frequency-sampling design of IIR filters is somewhat more complicated
than for FIR filters because of the requirement that H , be nonsingular. As for
the FIR filter, the samples of the desired frequency response must satisfy the
conditions to ensure that h, are real. The power of this method is its ability to
interpolate arbitrary magnitude and phase specifications. In contrast to most

7.4 Direct Frequency-Domain IIR Filter Design Methods 221

direct IIR design methods, this method does not require any iterative optimizat-
ion with the accompanying convergence problems.

As with the FIR version, this design approach is an interpolation method
rather than an approximation method, so it sometimes gives poor performance
between the interpolation points. This usually happens when the desired
frequency-response samples are not consistent with what an IIR filter can
achieve. One solution to this problem is the same as for the FIR case in Section
3.2: the use of more frequency samples than the number of filter coefficients, and
the definition of an approximation error function that can be minimized. No
restriction will guarantee stable filters. If the frequency-response samples are
consistent with an unstable filter, that is what will be designed.

7.4.2 Discrete Least Squared Equation-Error
IIR Filter Design

To obtain better practical filter designs, we extend the interpolation scheme of
the previous section to give an approximation design r n e t h ~ d . ~ ~ , ~ ' Note that the
method developed here minimizes an equation-error measure and not the usual
frequency-response error measure.

The number of frequency samples specified, L + 1, will be made larger than
the number of filter coefficients, M + N + 1. This means that Hz is rectangular,
and therefore (7.125) cannot, in general, be satisfied. To formulate an approxi-
mation problem, we introduce a length-(L + 1) error vector e in (7.121) and
(7.123) to give

Equation (7.125) becomes

where now H z is rectangular with L - M > N. Using the same methods as in
Section 3.2 to derive (3.19), we minimize the error e in a LS error sense by solving
the normal equations

If the equations are not singular, the solution is

a* = - [H , T~2]-1HThl .

The numerator coefficients are found by the same techniques as in (7.126):

222 Design of Infinite Impulse-Response Filters

which makes the upper M + 1 terms in e zero and the total squared error a
minimum.

As noted in Section 3.2 on LS error design of FIR filters, (7.129) is often
numerically ill conditioned, and (7.130) should not be used to solve for a*.
Special algorithms, such as those contained in LINPACK,' should be em-
ployed; they were used in the programs in the appendix.

The error e defined in (7.127) can better be understood by considering the
frequency-domain formulation. Taking the DFT of (7.127) gives

E is the error produced by trying to satisfy (7.120) when the equations are
overspecified. Equation (7.13 1) can be reformulated in terms of 8, the difference
between the frequency response samples of the designed filter and the desired
response samples, by dividing (7.131) by A,:

E is the error in the solution of the approximation problem, and E is the error in
the equations defining the problem. The usual statement of a frequency-domain
approximation problem is in terms of minimizing some measure of 8, but that
results in solving nonlinear equations. The design procedure developed in this
section minimizes the squared error E; thus only linear equations need to be
solved. There is an important relation between these problems. Equation (7.132)
shows that minimizing E is the same as minimizing E weighted by A. However,
A is unknown until after the problem is solved.

Although this method is posed as a frequency-domain design method, the
methods of solution for both the interpolation problem and the LS equation-
error problem are similar to the time-domain Prony rne th~d ,~ ' discussed in
Section 7.5.

Numerous modifications can be made to this method. If the desired
frequency response is close to what can be achieved by an IIR filter, this method
will give a design approximately the same as that of a true LS solution-error
method. It can be shown that E = O o b = 0. In some cases improved results
can be obtained by estimating A, and using that as a weight on E to
approximate minimizing 8. There are iterative methods based on solving (7.130)
and (7.126) to obtain values for A,. These values are used as weights on E to
solve for a new set of A, used as a new set of weights to solve again for A , . ~ ~ , ~ '
The solution of (7.1 30) and (7.126) is sometimes used to obtain starting values for
iterative optimization algorithms that need good starting values for
convergence.

7.4 Direct Frequency-Domain IIR Filter Design Methods 223

FIGURE 7.32. Sixth-order least-squared equation-error IIR filter

Example 7.9. Design of Least Square Equation-Error I I R Filter
To illustrate this design method, we designed a sixth-order low-pass filter

with 41 frequency samples to approximate. The magnitude of those less than
0.2 Hz is one and of those greater than 0.2 is zero. The phase was experimentally
adjusted to result in a good magnitude response. The design was performed with
Program 10 and the frequency response is shown in Fig. 7.32.

Summary

This section gave an LS error approximation method to design IIR filters. By
using an equation-error rather than a solution-error criterion, we obtained a
problem requiring only the solution of simultaneous linear equations.

Like the FIR filter version, the IIR frequency sampling design method and
the LS equation-error extension call be used for complex approximation and,
therefore, can design with both magnitude and phase specifications.

If the desired frequency-response samples are close to what an IIR filter of the
specified order can achieve, this method will produce a filter very close to what a
true LS error method would. However, when the specifications are not
consistent with what can be achieved and the approximating is large, the results

224 Design of Infinite Impulse-Response Filters

can be very poor or, in some cases, unstable. It is particularly difficult to set
realistic phase-response specifications. With this method it is even more
important to have a design environment that will allow an easy trial-and-error
procedure.

7.4.3 Least Squared Error Frequency-Domain Design

Practical problems occur in the design of a filter to separate signals according
to their energy. Because the energy content of a signal is the integral or sum of
the square of the signal, a mean squared error measure is natural. Unfortunately,
for the IIR filter design problem, the optimization procedure is nonlinear. This
fact was pointed out in the last section, where the equation error was used in
order to have a linear problem.

Because of the nonlinear nature of the LS error minimization, the method of
solution becomes dependent on the desired frequency response, and therefore
there is no single method for design. The mean squared error for magnitude
approximation is defined as

where x is a vector of filter parameters chosen to minimize q, and the error is
sampled at L + 1 frequencies mi. SteiglitzZ8 chose the parameter vector x to be
the coefficients of a cascade structure in order to best fit an iterative optimizat-
ion scheme. He applied a standard optimization algorithm-the Fletcher-
Powell method-to the minimization of (7.133). Other methods more directly
related to a squared error measure can also be u ~ e d . ~ . ' ~

Practical difficulties exist in solving this approximation problem. In some
cases local minima rather than the global minimum are found. In other cases
convergence of the minimization algorithm is slow or does not occur at all.
Numerical problems can result from ill-conditioned equations, and there is no
guarantee that the designed filter will be stable.

Choosing a desired frequency-response function H,(o) so that the optimum
approximation does not have a large error is important. It often means not
having an abrupt discontinuity between the pass band and stop band. The
techniques discussed in Section 3.2.2.1 are also applicable here.

Another factor is starting the iterative optimization algorithm with a set of
coefficients in x that is close to the optimum. That can be done by using the
frequency-sampling method or the method of Section 7.4.2 to give a design that
can be used to start an LS algorithm. Because the error defined in (7.133) is in
terms of magnitudes, an unstable design can be converted to a stable one by

7.4 Direct Frequency-Domain IIR Filter Design Methods 225

does not affect the magnitude frequency response, but it does stabilize the effect
of that pole.28

A generalization of the idea of a squared error measure is defined by raising
the error to the p power, where p is a positive integer. This error is defined by

D e ~ z k y ~ ~ developed this approach and used the Fletcher-Powell method to
minimize (7.134). He also applied this method to the approximation of a desired
group delay function. An important characteristic of this formulation is that the
solution approaches the Chebyshev or min-max solution as p becomes large. A
program for this design method is given in reference 10.

7.4.4 The Chebyshev Error Criterion for
IIR Filter Design

The error measure that often best meets filter design specifications is the
maximum error in the frequency response that occurs over a band. The filter
design problem becomes the problem of minimizing the maximum error (the
min-max problem).

One approach to this error minimization, by Deczky, minimizes the p power
error of (7.134) for large p. Generally, p = 10 or greater approximates a
Chebyshev r e ~ u l t . ' ~ . ~ ' Dolan and Kaiser1' use a penalty function approach.

Linear programming can be applied to this error measure3 ' 33 by linearizing
the equations in much the same way as in (7.129).' In contrast to the FIR case
this can be a practical design method because the order of a practical IIR filter is
generally much lower than for an FIR filter. A scheme called differential
correction has also proven to be e f f e ~ t i v e ~ ~ , ~ ~ .

Although the rational approximation problem is nonlinear, an application of
the Remes exchange algorithm can be implemented36p38. Since the zeros of the
numerator of the transfer function mainly control the stop-band characteristics
of a filter, and the zeros of the denominator mainly control the pass band, the
effects of the two are somewhat uncoupled. An application of the Remes
exchange algorithm, alternating between the numerator and denominator, gives
an effective method for designing IIR filters with a Chebyshev error criterion.37
If the orders of the numerator and denominator are the same and the desired
filter is an ideal low-pass filter, the Remes exchange should give the same result
as the elliptic function filter in Section 7.2.4. However, this approach allows a
numerator or denominator of any order to be set and pass band of any shape to
be approximated. In some cases a filter whose denominator has lower order
than its numerator produces fewer required multiplications than an elliptic-
function filter.37,38

226 Design of Infinite Impulse-Response Filters

7.5 PRONY'S METHOD FOR TIME-DOMAIN
DESIGN OF IIR FILTERS

This section addresses the problem of designing an IIR digital filter with a
prescribed time-domain response. Most formulations of time-domain design of
IIR filters give nonlinear equations for the same reasons as for frequency-
domain design. Prony, in 1790, derived a special formulation to analyze elastic
properties of gases, which produced linear equations. A more general form of
Prony's method can be applied to the IIR filter design by using a matrix
d e ~ c r i p t i o n . ~ ~

The transfer function of an IIR filter is given by

and the impulse response h(n) is related to H (z) by the z transform.

Equation (7.1353 can be written as

which is the z transform version of convolution. This convolution can be written
as a matrix multiplication. Using the first K + 1 terms of the impulse response,
we write

To uncouple the calculations of the a, and the b,, we partitition the matrices in
the same way as in (7.124) to give

7.5 Prony's Method for Time-Domain Design of IIR Filters 227

where b is the vector of the M + 1 numerator coefficients of (7.135), a* is the
vector of the N denominator coefficients (a, = I), h , is the vector of the last
K - M terms of the impulse response, H , is the (M + 1)-by-(N + 1) partition of
(7.137), and H , is the (K - M)-by-N remaining part. The lower K - M
equations are written

which must be solved for a*, the denominator coefficients in (7.135). The upper
M + 1 equations of (7.138) are written

which allow b, the numerator coefficients of the transfer function (7.135), to be
calculated.

If K = M + N , H , is square. If H , is not singular, (7.139) can be solved for a,
and b can be calculated from (7.140). For this case there are M + N + 1
unknown coefficients, and therefore the same number of impulse-response terms
can be matched. If H , is singular, (7.1 39) may have many solutions, in which case
h(n) can be generated by a lower-order system.

Although Prony's method, applied to the time-domain design problem here,
is similar to the solution of the frequency-sampling design problem, there are
important differences. In (7.120) the IDFT is used to obtain the matrix of (7.121),
which is cyclic convolution. Equation (7.1 37) is noncyclic convolution, and the
K + 1 terms of h(n), used to form H , result from a truncation of the infinitely
long sequence.

Because the basic Prony method is an interpolation scheme to design a filter
that exactly produces the first K + 1 terms of the specified h(n), it says nothing
about h(n) for n > K. To control h(n) over a larger range of n, we pose an
approximation problem. We define an equation-error vector for (7.138)

If K > M + N, we cannot solve exactly (7.141), but we can find b and a that will
minimize the norm of e by using the same methods as for (3.19). The normal
equations of the lower part of (7.141) are

228 Design of Infinite Impulse-Response Filters

If H, has full rank, (7.142) can be solved for a*. This solution minimizes the
lower part of e, and b = Hla gives zero error for the upper part.

If the solution error is defined as the difference between the desired impulse
response and the actual impulse response by

the length-& + 1) solution-error vector e is related to the equation-error vector
e of (7.141) by

e = Ae, (7.143)

where A is a (K + 1)-by-(K + 1) convolution matrix formed from the a(n)
coefficients. Prony's method minimizes Ilell, which is a weighted version of I I & (I .

Various modifications can be made to the form presented of Prony's method.
After the denominator is found by minimizing the equation error, the numerator
can be found by minimizing the solution error. It is possible to mix the exact and
approximate methods of (7.138) and (7.141). The details can be found in
references 39-41.

Several modifications to Prony's method have been made to use it to
minimize the solution error. Most of these iteratively minimize a weighted
equation error with Prony's method and update the weights from the previous
determination of a.42343

If an LS error, time-domain approximation is the desired result, a mini-
mization technique can be applied directly to the solution error. The most
successful method seems to be the Gauss-Newton algorithm with a step-size
control. Combined with Prony's method to find starting parameters, it is an
effective design tool.

7.6 IIR FILTER DESIGN PROGRAMS

Several digital filter design programs are available. Most of the examples in this
book were designed by the programs in the appendix. A more user-friendly
commercial program is available from ASPI." It has provisions for Butter-
worth, Chebyshev I and 11, and elliptic function filters with low-pass, high-pass,
bandpass, and band-rejection forms. The program runs on an IBM or Texas
Instruments (PC) and can produce machine language code for the TMS32010
digital signal-processing chip. A somewhat similar program for the same IIR
filter types is called DISPR0,12 which runs on the IBM PC.

Certain IIR designs can be carried out by the large and versatile programs
from ILS14 and ISP.lS These are general programs and run on mainframe
computers, but smaller versions are available that will run on a PC.

The FORTRAN program for the four classical approximations is given as
program 9. It is written to closely follow the notation and theory developed in

References 229

this chapter so that each can help in understanding the other. The algorithms
used are the most accurate and efficient known to the authors; however, the
inputoutput sections are primitive and would have to be further developed for
easy use.

Four programs for IIR filter design are in reference 10. Part of the
program DOREDI designs and simulates IIR filters, Deczky's program, Dolan
and Kaiser's program, and Steiglitz and Ladendorf's program are all available
in FORTRAN.'' A part of the SIG package from Lawrence Livermore Labs13
designs IIR filters. Indeed, SIG is a very valuable tool for the signal processor.

It is very instructive to design a variety of filters with different specifications
in order to develop insight into their various characteristics. It is best
accomplished with an interactive program with graphics output.

Summary

The chapter developed the main approaches to IIR filter design. The theory and
design equations for the Butterworth, Chebyshev, inverse Chebyshev, and
elliptic function filters were given along with variations to the Butterworth and
Chebyshev for arbitrary zero locations. The elliptic function filter was developed
in more detail than in most books because of the important nature of its
optimality. The frequency-sampling and LS equation-error design methods
were covered because of their simplicity and their ability to approximate
arbitrary, complex, desired frequency responses. The problems of general LS
error design and Chebyshev error design using the Remes algorithm were
described and references were given. Finally, time-domain design methods based
on Prony's methods were given, and general time-domain LS error methods
were described and referenced. After the design of an IIR filter, the transfer
function must be realized, and that is the topic of the next chapter.

REFERENCES

[I] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1975.

[2] A. V. Oppenhim and R. W. Schafer, Digital Signal Processing, Englewood Cliffs,
NJ: Prentice-Hall, 1975.

[3] F. J. Taylor, Digital Filter Design Handbook, New York: Dekker, 1983.

[4] C. T. Mullis and R. A. Roberts, An Introduction to Digital Signal Processing,
Reading, MA: Addison-Wesley, 1987.

[5] L. R. Rabiner and C. M. Rader, eds., Digital Signal Processing, selected reprints,
New York: IEEE Press, 1972.

[6] Digital Signal Processing 11, selected reprints, New York: IEEE Press, 1979.

[7] B. Gold and C. M. Rader, Digital Processing of Signals, New York: McGraw-Hill,
1969.

Design of Infinite Impulse-Response Filters

J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Englewood Cliffs, NJ: Prentice-Hall, 1983.

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, L I N P A C K Users'
Guide, Philadelphia: SIAM, 1979.
Programs for Digital Signal Processing, New York: IEEE Press, 1979.

Digital Filter Design Package, DFDP, Interactive Software for Digital Filter
Design, Version 1.02, Atlanta, GA: Atlanta Signal Processors Inc., 1984.
J. O'Donnell, DISPRO 01.0 User's Manual, Digital Filter Design Software,
Wayland, MA: Signix Corp., 1983.
SIC: A General Purpose Signal Processing, Analysis, and Display Program,
Livermore, CA: Lawrence Livermore Labs, 1985.
ILS: Interactive Signal Processing Software, Goleta, CA: Signal Technology, Inc.

l*S*P: The Interactive Signal Processor, Bedford, MA: Bedford Research.

C. S. Burrus and T. W. Parks, DFTIFFTand Convolution Algorithms, New York:
Wiley-Interscience, 1985.
D. A. Calahan, Modern Network Synthesis, Vol. I, Approximation, New York:
Hayden, 1964.
M. E. Van Valkenburg, Analog Filter Design, New York: Holt, Rinehart &
Winston, 1982.
L. Weinberg, Network Analysis and Synthesis, New York: McGraw-Hill, 1962.
B. D. Rakovich and V. B. Litovski, "Monotonic Passband Low-Pass Filters with
Chebyshev stopband Attenuation,'' IEEE Trans. ASSP ASSP-22 39-45 (1974).

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions,
National Bureau of Standards, 1964, Washington, D. C.: Chaps. 16 and 17 (L. M.
Milne-Thomson) pp. 571, 574, 579, 598, 599; reprinted by Dover, 1965.
R. Bulirsch, "Numerical Calculation of Elliptic Integrals and Elliptic Functions,"
Numer. Math. 7, 78-90 (1965).
A. H. Gray and J. D. Markel, "A Computer Program for Designing Digital Elliptic
Filters," IEEE Trans. ASSP ASSP-24, 529-538 (1976).
C. B. Sharpe, "A General Tchebycheff Rational Function," Proc. IRE 42,454-457
(1954).
D. Helman, "Tchebycheff Approximations for Amplitude and Delay with Rational
Functions," presented at the Symposium on Modern Network Synthesis,
Polytechnic Institute of Brooklyn, April 1955; published in Modern Network
Synthesis, MRI Symposium Series, vol. 5, 1955, pp. 385-402.
C. K. Sanathanan and J. Koerner, "Transfer Function Synthesis as a Ratio of Two
Complex Polynomials," IEEE Trans. Automatic Control AC-8, 56-58 (1963).
M. A. Sid-Ahmed, A. Chottera, and G. A. Jullien, "Computational Techniques for
Least-Square Design of Recursive Digital Filters," IEEE Trans. ASSP ASSP-26,
478-480 (1978).
K . Steiglitz, "Computer-Aided Design of Recursive Digital Filters," IEEE Trans.
Audio Electroacoustics 18, 123- 129 (1 970).
M. T. Dolan, "Comments on 'On the Approximation Problem for Recursive
Digital Filters with Arbitrary Attenuation Curve in the Pass-Band and the Stop-
Band'," IEEE Trans. ASSP ASSP-24, 575-577 (1976).

References 231

A. G. Deczky, "Synthesis of Recursive Digital Filters Using the Minimum p-Error
Criterion," IEEE Trans. Audio Electroacoustics 20, 257-263 (1972).

P. Thajchayapong and P. J. W. Rayner, "Recursive Digital Filter Design by Linear
Programming," IEEE Trans. Audio Electroacoustics 21, 107-112 (1973).

L. R. Rabiner, N. Y. Graham, and H. D. Helms, "Linear programming Design of
IIR Digital Filters with Arbitrary Magnitude Function," IEEE Trans. ASSP
ASSP-22, 117-123 (1974).

A. T. Chottera and G. A. Jullien, "A Linear Programming Approach to recursive
Digital Filter Design with Linear Phase," IEEE Trans. Circuits Systems CAS-29,
139-149 (1982).

D. E. Dudgeon, "Recursive Filter Design Using Differential Correction," IEEE
Trans. ASSP ASSP-22, 443-448 (1974).

S. Crosara and G. A. Mian, "A Note on the Design of IIR Filters by the
Differential-Correction Algorithm," IEEE Trans. Circuits Systems CAS30, 898-
903 (1983).

A. G. Deczky, "Equiripple and Minimum (Chebyshev) Approximations for
Recursive Digital Filters," IEEE Trans. ASSP ASSP-22, 98- 11 1 (1974).

H. G. Martinez and T. W. Parks, "Design of Recursive Digital Filters with
Optimum Magnitude and Attenuation Poles on the Unit Circle," IEEE Trans.
ASSP ASSP-26, 150- 156 (1978).

T. Saramaki, "Design of Optimum Recursive Digital Filters with Zeros on the
Unit Circle," IEEE Trans. ASSP ASSP-31, 450-458 (1983).

C. S. Burrus and T. W. Parks, "Time Domain Design of Recursive Digital Filters,"
IEEE Trans. Audio Electroacoustics 18, 137-141 (1970).

F. Brophy and A. C. Salazar, "Considerations of the Pade Approximant
Technique in the Synthesis of Recursive Digital Filters," IEEE Trans. Audio
Electroacoustics 21, 500-505 (1973).

F. Brophy and A. C. Salazar, "Recursive Digital Filter Synthesis in the time
Domain," IEEE Trans. ASSP ASSP-22, 45-55 (1974).

A. G. Evans and R. Fischl, "Optimal Least Squares Time-Domain Synthesis of
Recursive Digital Filters," IEEE Trans. Audio Electroacousticsl 21, 61-65 (1973).

K. Steiglitz, "On the Simultaneous Estimation of Poles and Zeros in Speech
Analysis," IEEE Trans. ASSP ASSP-25, 229-234 (1977).

M. S. Bertran, "Approximation of Digital Filters in One and two Dimensions,"
IEEE Trans. ASSP ASSP-23,438-443 (1975).

J A. Cadzow, "Recursive Digital Filter Synthesis Via Gradient Based Algorithms,"
IEEE Trans. ASSP ASSP-24, 349-355 (1976).

Implementation of lnf inite
Impulse- Response Filters

All of the analysis of IIR filters in Part I11 has so far been in terms of linear
systems. When the finite word-length effects of overflow and quantization error
are considered, the digital filter becomes a nonlinear system. It is these
nonlinearities of quantization that cause all of the difficulties in the analysis of
fixed-point recursive filter implementations.

This chapter begins with a discussion of different ways to implement recursive
filters (different structures), with emphasis on second-order blocks. Quantization
noise and coefficient quantization errors are analyzed with linear theory.
Finally, the instabilities caused by overflow and quantization in a recursive filter
are studied.

8.1 RECURSIVE STRUCTURES

When a filter is implemented with a recursive structure, the finite word-length
problems become more severe than the problems associated with a nonrecursive
filter structure.'-3 The following two problems are more difficult to analyze for
recursive filters than they are for nonrecursive filters.

1. Filter coefficient errors from quantization.
2. Quantization noise and overflow from arithmetic operations.

In addition to the effects of quantization of the coefficients and of finite-
precision arithmetic discussed for nonrecursive filters in Chapter 5, two new
problems are caused by the feedback in a recursive filter.

1. Small-scale limit cycles, which are oscillations caused by the quantization

234 implementation of Infinite Impulse-Response Filters

nonlinearity in the seemingly stable feedback loop. They usually have low
amplitude and can often be tolerated.

2. Large-scale limit cycles, which are oscillations caused by overflow in the
feedback loop. Their amplitude covers the complete dynamic range of the filter,
so these cycles must be prevented.

These problems are especially difficult to analyze for recursive filters. The
approximation problem of designing a rational transfer function with quantized
coefficients has not been solved. Although overflow leads to errors with
nonrecursive filters, it can lead to large-amplitude. sustained oscillations in
recursive filters. The whole area of instabilities introduced by finite word-length
effects is still a subject of r e ~ e a r c h . ~ Different structures have different character-
istics for these effects. That is the reason for examining different implementations
of the same transfer function (different structures).

In a recursive digital filter the output is a linear combination of past inputs
and past outputs. Past outputs are fed back to produce the present output. The
difference equation

shows how the output y(n) is computed for a recursive filter with a transfer
function

When a recursive digital filter is implemented directly, as in (8.1), errors
introduced by quantization of the coefficients can cause significant variation
from the desired frequency response. A filter designed to be stable can become
unstable after the coefficients are quantized.

8.1.1 Coefficient Sensitivity

When the coefficients in the difference equation (8.1), which implements a
recursive digital filter, are quantized, the resulting coefficient errors can cause
major changes in the filter characteristics. We can understand the effect of
coefficient errors on both the frequency response and the stability by studying
how the locations of the poles of the transfer function H(z) in (8.2) change when
there are changes in the coefficients a, of the denominator of H(z).

The transfer function of a recursive filter is a rational function of z, as shown
in (8.2). To obtain H(z) in terms of positive powers of z, we rewrite it as

8.1 Recursive Structures 235

The denominator polynomial in (8.4) may be written as

where a, = 1 .O.
To see how a change in coefficient a, affects the pole location z,, consider the

Taylor series expansion4 of l (z) considered as a function of z and a,: A"(z,

-
2 (z m + Az,, a, + Aa,) = A(z,, a,) + Aa, -

aA"(z) + Az, ---- + (8.6)
zak az ,

Assuming that Aa, and Az, compensate to keep A(z) the same, we get

~ A " (z) / ~ u ,
Az, = -Ask- -.

aA"(z) /a~,

Evaluating the partial derivatives in (8.7) gives

Evaluating (8.8) and (8.9) at z = z , gives

The expression for coefficient sensitivity (8.10) leads to several conclusions about
recursive filter implementation:

1. The filter is most sensitive to variations of the last coefficient a , because
N - k is zero.

2. Moving the pole z , closer to the unit circle ((z (= 1) increases the sensitivity
of the pole location to the variation of a coefficient because the numerator
of (8.10) is larger.

236 Implementation of Infinite Impulse-Response Filters

3. Coefficient sensitivity increases when the poles are close together because
of small values of z , - z j in the denominator of (8.10).

When there are sharp transitions in the frequency response (when N is large),
it is difficult to have well-separated poles. Thus, for sensitivity reduction, a
cascade of several lower-order sections is recommended instead of a direct
realization of a high-order filter. In this way it is possible to have well-separated
poles within each section and attain reduced sensitivity to coefficient variations
within each lower-order section. Fourth- or even higher-order blocks may make
sense for implementations where the multiply/accumulate operation is especi-
ally easy to do, but generally the transfer function is broken up into second-
order sections. The second-order sections are much easier to analyze than
higher-order blocks.

Since the coefficient sensitivity, according to conclusion 3, increases when
poles are close together, very narrow-band filters are more sensitive to
coefficient errors than wide-band filters because the poles are usually clustered
around the pass-band region of the z plane.

8.1.2 Second-Order Structures

The sensitivity analysis in Section 8.1.1 indicates that a less-sensitive structure
may be obtained by breaking up the transfer function into lower-order sections
and connecting these sections in parallel or in cascade. Although higher-order
blocks may be attractive in some applications, the second-order section is a
good building block to use in parallel or cascade structures. The principles
illustrated by the second-order sections described in this section also apply to
higher-order sections.

The most direct form for implementing the difference equation

is shown in Fig. 8.1. The direct structure in the figure can be simplified,
-!

combining the four delay blocks into two, as shown in Fig. 8.2.

r(n) - - y(n)

FIGURE 8.1 Direct implementation of a second-order block.

8.1 Recursive Structures 237

The same difference equation may also be implemented in the transpose
structure, shown in Fig. 8.3. It is called the transpose structure because it can be
obtained from the state-variable or matrix description of Fig. 8.2 by transposing
the appropriate matrices,' as described in Section 8.1.5. An alternative structure
is the coupled form for a second-order block, proposed by Gold and Rader.6
This structure implements a conjugate pair of poles with real part R and
imaginary part f I, as shown in Fig. 8.4.

Other structures may be used to implement a second-order section. One
family of structures may be derived from a state-variable analysis, as described
in Section 8.1.5.' There are also lattice structures,' wave digital filter structures,'
ladder filteq9 and many others. Each of these structures may be used to
implement low-order blocks and may be combined with other blocks im-
plemented with different structures. The possibilities are endless.

This section has only presented the basic direct, transpose, and coupled
structures because they are easy to understand and work quite well when
enough bits are available for coefficient and signal representations, so quantizat-

FIGURE 8.2 Direct-form-second-order block.

FIGURE 8.3 Transpose Form Second-order Block.

- -
FIGURE 8.4 Coupled-Form for Second Order Block.

238 Implementation of Infinite Impulse-Response Filters

ion effects are not serious. When fewer bits are available, more complicated
structures less sensitive to quantization errors may be necessary.'.'

8.1.3 Cascade Structures

By factoring, we can write the rational transfer function

where [N / 2] is the smallest integer 3 N / 2 .
Each of the second-order factors in (8.13) can be implemented with one of the

structures described in Section 8.1.2, giving a realization of H (z) as a cascade of
second-order sections, as shown in Fig. 8.5. If the filter has an odd order, then a
first- or third-order section is necessary.

There are many different cascade structures corresponding to different
orderings of the Hk(z) blocks and different pairings of the numerator and
denominator factors of (8.13). This freedom of ordering and pairing may be used
to reduce quantization noise. In the design example in Section 8.5, the zeros are
paired with nearby poles to reduce the possibility of a very peaked frequency
response for that section. As described by Jackson,' second-order sections are
ordered so that the section with the poles closest to the unit circle is last. To
determine the best pairing and ordering for a particular filter, one must evaluate
the quantization noise for all possibilities, using the methods described in
Section 8.2.3.

It is possible to use different structures for different sections. For example,
those sections with poles near the unit circle can be implemented with structures
that have lower sensitivity but may require more computation. Sections with
well-separated poles away from the unit circle can be implemented with simpler
structures.

A possible advantage of the cascade structure is that unit circle zeros of the
overall transfer function can easily be implemented. When the numerator
coefficient b,, in (8.13) is equal to unity, the zero for the k th section is on the unit
circle. In the cascade structure if one section has a zero on the unit circle, then

FIGURE 8.5 Cascade Structure.

8.1 Recursive Structures 239

(except for possible pole-zero cancellation) the entire filter will have a zero on
the unit circle.

8.1.4 Parallel Structures

If the denominator of (8.12) has N , real roots and N , pairs of complex-conjugate
roots, then a partial fraction expansion of (8.12) gives

M - N

H(z) = x p k Y k + . (8.14)
k = 0

When both the real and complex-conjugate poles are grouped in pairs, (8.14)
becomes

IN121 M - N
H(z) = x Hk(z) + 2 pkz-k

k = 1 k = O

with

The parallel structure is shown in Fig. 8.6 for M = N.
In the parallel structure, unlike the cascade structure, reordering the Hk(z)

blocks makes no difference; therefore the problem of choosing the order of
second-order blocks is avoided. Further, unlike the cascade structure, scaling
can be performed for each block independently of the other blocks. A possible
disadvantage of the parallel structure is the difficulty of exactly placing zeros on
the frequency axis (unit circle). In the cascade structure it is easy to place a zero
of the filter on the unit circle by simply placing the zero of one of the cascaded
sections on the unit circle. However, in the parallel structure the zeros depend on
cancellation of terms in the summation and are more sensitive to coefficient
quantization.2

FIGURE 8.6 Parallel Structure

240 Implementation of Infinite Impulse-Response Filters

8.1.5 State-Variable Filter Descriptions

It is often convenient to model a digital filter as a linear time-invariant system
with constant coefficient, matrix difference equations called state equations.'

With the state vector x, single input u, and output y,

For an Nth-order single-inputlsingle-output system, the sizes of the matrices are

A N x N
B N x l

C 1 x N
D 1 x 1

The transfer function of the system in (8.15) is

where Z is the identity matrix.
Many choices of A, B, C , and D in (8.17) give the same transfer function (8.18).

Let

A' = M - ' A M , B ' = M - ~ B , C' = C M , D'= D. (8.19)

The system described in (8.19) has a transfer function

H1(z) = C'[zZ - A ' I 1 B ' + D'. (8.20)

Substituting (8.19) into (8.20) gives

Since

we have H1(z) = H(z).
If the digital filter were a linear system, then all of the infinitely many systems

described by (8.20) for different choices of M would all have the same behavior
(i.e., would all be equivalent). However, since a digital filter is not a linear system
because finite word-length arithmetic is used, different choices of M (different
realizatioils of the filter) will have different properties. The discussion in Section
8.3 describes how to choose M to minimize the effects of quantization noise. A

8.1 Recursive Structures 241

FIGURE 8.7 State-Variable Structure.

block diagram of the state-variable structure is shown in Fig. 8.7 for

The state-variable structure requires much more arithmetic than the simpler
direct and transpose structures.

8.1.6 Other Structures

Many other structures for implementing digital filters have been proposed as
alternatives to the cascade or parallel connection of second-order blocks. These
structures are generally less sensitive to coefficient errors. The ones mentioned
here are the lattice7 and the wave digital filter.'

Lattice
The lattice structure is widely used for speech synthesis.' It is less sensitive to
coefficient errors than the direct forms, has a nice interpretation in terms of an
acoustic tube, and has a simple way to test for stability. The lattice section in Fig.
8.8 can be connected to other sections to form a higher-order filter.

FIGURE 8.8 Lattice Section.

242 Implementation of Infinite Impulse-Response Filters

Wave Digital Filters:
The wave digita1,filter structure has been developed from analog LC filters by
Fettweis.' There are several types of wave digital filters with varying com-
putational and storage requirements. The class of wave digital filters is
characterized by a very low sensitivity to coefficient errors.

Generally, as the structure of a digital filter becomes more and more complex,
part of the load of doing the filtering is lifted from the coefficients and is carried
in the structure itself. The more complicated structures, such as the wave digital
filter, are capable of operating with very few bits for coefficient representation.
Conversely, if 16 or more bits are available for the coefficients and the signal
variables, then a simpler structure usually suffices.

Summary

Direct implementation of a high-order recursive filter is not practical with finite
word-length fixed-point arithmetic. Low-order blocks can be implemented in
the direct form and connected either in cascade or in parallel to construct less-
sensitive filter structures.

More complicated filter structures that require more computation are less
sensitive to finite word-length effects. Some popular examples of these structures
are minimum-noise, state-variable filters, lattice filters, and wave digital filters.

8.2 FINITE WORD-LENGTH EFFECTS

For the minimum computing time or for the most powerful filter that can be
computed in a given time, fixed-point arithmetic is usually the best choice. Most
signal-processing chips use fixed-point arithmetic for the most efficient use of the
limited silicon area available. This section analyzes in detail fixed-point
implementations of recursive filters. The finite word-length effects are more
complicated and potentially cause more trouble with recursive filters than with
nonrecursive filters.

Finite word-length effects are divided into four categories:

1. Filter coefficient errors.
2. Quantization noise and overflow errors in representing signals as fixed-

point numbers.
3. Small-scale limit cycles due to the nonlinear quantization characteristics

of fixed-point implementations.
4. Large-scale limit cycles due to the nonlinear overflow characteristics of

fixed-point implementations.

Each of these aspects of digital filtering requires a different type of analysis.

8.2 Finite Word-Length Effects 243

8.2.1 Coefficient Quantization

As described in Section 8.1.1, a recursive filter is less sensitive to coefficient errors
when it is implemented with second-order blocks. Even with a second-order
block, there are only a finite number of pole locations because of the coefficient
quantization. It may not be possible to place a pole in the exact spot in the z
plane specified by a design procedure described in Chapter 7. For example, in
digital oscillator design there are limits on the frequencies of oscillation that can
be obtained. For very low frequencies (poles near + I), especially, there are not
many possible pole locations. As shown in Example 8.1, surprisingly few low
frequencies are available, even when 16-bit coefficients are used.9

Example 8.1 A Digital Oscillator
A digital oscillator has an output y(n) that satisfies the homogeneous

difference equation

The roots of the characteristic equation

are located at

where the frequency of oscillation is

For very low frequencies (fo z 0) the approximation

may be used so that the lowest frequencies of oscillation, corresponding to

are approximately

244 Implementation of Infinite Impulse-Response Filters

where Q = 2-'+' is the quantization step size. For 16-bit coefficients B = 16
and

J m
for" = K3

The possible frequencies or, equivalently, the possible pole locations are not very
dense for regions near + 1 in the z plane, even with 16-bit coefficients in the
difference equation. The reason is that even small changes in the coefficient b,
cause large changes in the argument of the cosine function in (8.27), because the
cosine function is so flat for small values of the angle 2 6 .

The same quantization of pole locations that is shown in Example 8.1 is also
present in recursive filters. Different second-order filter structures have different
grids of possible pole and zero locations (see reference 2 for examples).

The problem of optimum design for quantized coefficients is much more
difficult for the rational transfer function of the IIR filters than it is in the FIR
case, and there are no convenient programs available for designing optimum,
quantized coefficient IIR filters. The following trial-and-error approach is useful
in practice and should give satisfactory results in most cases.1°

1. Design the filter and assume no coefficient quantization.
2. Quantize coefficients in the scaled filter and check the frequency response.

Also check the pole locations to determine stability of the filter.
3. If the filter in step 2 meets specifications in some bands but not in others,

tighten the requirements on the failed bands and relax the weighting on
the others. Then repeat step 1. If the filter fails to meet specifications in all
bands, increase the order and repeat step 1.

8.2.2 Scaling and Overflow

Scaling is even more important for recursive filters than for nonrecursive filters.
For a nonrecursive filter an overflow of the output register only causes an error
in the output sample, but for a recursive filter an overflow is fed back and affects
many following outputs. For structures that can have large-scale limit cycles, the
overflow can set off an oscillation with full-scale amplitude, which completely
destroys the usefulness of the filter output for all time after the overflow occurs.

The principles of scaling are the same as for nonrecursive filters. First, the
unit-pulse responses (equivalently the frequency responses) are calculated

8.2 Finite Word-Length Effects 245

input
x (n) 4

-
T

FIGURE 8.9 Scaling Resonses to Registers

h l (n)

between the input and the various registers (adders) in the filter where overflow
might occur (see Fig. 8.9).

The three most useful measures of gain from the input to register k are
essentially the same as the measures described in Section 5.3.3. They are
repeated here for convenience. We assume that all registers are the same size
(e.g., all 16-bit registers) so that the scale factor G, must be calculated to make
the magnitude of the signal at the kth register less than unity to prevent
overflow. The scaled unit-pulse response is given as

-
fl

The gain factor is equal to one of the following three measures of the size of h(n).

T

-
y hk(n)

The 1, norm of h is of the form

register 1

register k

The Chebyshev norm of the frequency response H(F) is

The I, norm of h is given as

If G, = Ilhlll, then the signal at register k is guaranteed not to overflow. A
larger gain occurs (with the resulting smaller quantization noise) if G, = liHllc.
This choice of gain only guarantees that the steady-state response of the system
to a sine wave will not overflow. Transient signals may occasionally cause
overflow. The third choice of the gain factor G = 1 1 hi, also allows overflow, but

246 Implementation of Infinite Impulse-Response Filters

lends itself to a calculation of the probability of overflow1. The scaling
procedure is described in detail for a second-order section in Example 8.2.

Example 8.2 Scaling a Second-Order Section
The transpose structure for a second-order filter shown in Fig. 8.10 has a

transfer function

This transfer function can be used to calculate the appropriate gain factor to use
in scaling to control overflow in the summation at the output. It is also
necessary to calculate the transfer functions to the individual internal adders.
The output of the first adder is denoted y,, and the transfer function from the
input to yl is

The output of the second internal adder is denoted y,, and the transfer function
from the input to y, is

-- y2(z) - H2(z) =
(b, - a,b,) + (b, - a2bo)z-'

X(z) 1 + a,z-' + a2zY2

These transfer functions (or the corresponding unit-pulse responses) are now
used to calculate the gain factors. See the design example in Section 8.4 for a
detailed illustration of these scaling principles.

Summary
Scaling is performed by first calculating the transfer function from the input to
the register where overflow is possible. Various measures of the effective gain of
this transfer function can be used to determine a scale factor to use in reducing
the gain, if necessary, so that the possibility of overflow is eliminated, or at least

x (n)) b 2- , ~ (n)

-a2 -a1

FIGURE 8.1 0 Transpose Structure Scaling.

8.2 Finite Word-Length Effects 247

limited. The gain should not be reduced any more than necessary in order to
preserve the output signal to quantization noise ratio.

8.2.3 Quantization Noise

Multiplying a B,-bit number with a B2-bit number gives a (B, + B2)-bit
product. Because of the recursive nature of the computation in (8.1), the
(B, + B2)-bit product must be approximated by fewer bits or else the word
length would grow without bound. As described in Section 5.1, either truncation
or rounding may be used to give a B-bit approximation to the (B, + B,)-bit
number. The difference between the true product z = x . y and the approximate
B-bit representation [zlQ, e = z - [zlQ, is modeled as a uniformly distributed
random variable that is independent of the value of z. As shown in Section 5.1,
the variance of this quantization noise is Q2/12, where the quantization step size
Q = 2-B+1. When rounding is used, the noise n is called roundoffnoise and has
zero mean. Rounding will be assumed for the remainder of this discussion. When
the product is rounded to B bits, the noise has, from (5.10), a variance of 2-2B/3.

For the purpose of roundoff noise analysis, the digital filter is modeled as a
linear, time-invariant system. As in Chapter 5, a noise source with mean zero
and variance given by (5.10) is used to represent the rounding error made after
multiplication. The noise samples are assumed to be independent, resulting in a
white-noise source with a noise power of 2-2B/3.

The noise power at the output is found by assuming that each noise source is
independent of all the others so that the total power is simply the sum of the
individual noise powers. The noise power at the output that results from one
noise source ni is found by first calculating the transfer function from the
location of the ith noise source, Hi(z), and then evaluating the power by
integrating the noise power spectral density3 to give

Figure 8.1 1 illustrates how the noise sources contribute to the total output noise.
The blocks labeled Hi correspond transfer functions from the location of the ith
noise source to the output of the filter. Roundoff noise analysis will only be

FIGURE 8.1 1 Contributions of Noise Sources.

248 Implementation of Infinite Impulse-Response Filters

FIGURE 8.12 Transpose Structure with Quantization Noise

carried out in detail for second-order sections. The principles illustrated by these
structures also apply to higher-order sections.

Example 8.3 Noise Power Calculation for a Second-Order Block
The transpose structure in Fig. 8.3 is reproduced in Fig. 8.12 with the additive

quantization noise indicated by additive noise errors ei(n) at the three places
where the signal must be quantized. The transfer function from the first noise
source e , to the output is

The transfer function from the second noise source e , to the output is

Finally, the transfer function from the third noise source to the output is

All three of these transfer functions have the same squared magnitude, so the
noise gain factor for all three is

After evaluating the integral in (8.40), we get

1 + a2
R =

(1 - a2)[(1 + - a:] '

The largest noise gain R occurs when the filter has a double pole near either + 1

8.2 Finite Word-Length Effects 249

(zero frequency) or - 1 (one half of the sampling frequency) with a: = 4a2. In
this case

1 + a,
R = R,,, =

(1 - a2j3 '

The smallest noise gain occurs when the filter has poles near plus or minus one
quarter of the sampling frequency with a, = 0 and

The total noise power is

where Q = 2-2B/3.
This example shows that the largest noise gain occurs for narrow-band low-

pass (poles near + 1) or high-pass filters (poles near - 1). Further, according to
(8.42), when the poles are near the unit circle (a, close to I), the noise gain is
especially large. The smallest noise gain occurs for filters with the pass band near
one half the sampling frequency; poles not too near the unit circle correspond to
a small value of the coefficient a, (see (8.43)).

Summary

Quantization noise is modeled as independent white-noise sources inserted at
each point where the signal is quantized. The contribution of each noise source
to the output is determined by the transfer function from the location of the
noise source to the output. An example using a transposed second-order section
is given. The total noise power at the output of the filter is calculated as the sum
of the individual contributions. The transposed structure does not have the best
noise characteristics. The direct implementation in Figure 8.1 is better and
minimum noise structures are better.

8.2.4 Limit Cycles

In the analysis of recursive filters, we have thus far assumed that the filter was a
linear system. The quantization noise analysis in Section 8.3.3 modeled the
quantization error as an additive noise source and used linear system theory to
provide estimates of the noise power resulting from quantization.

Digital filters are not linear systems because of the overflow and quantization
phenomena. The overflow phenomenon is a distinctly nonlinear type of

250 Implementation of Infinite Impulse-Response Filters

behavior. The methods used to handle overflow (two's complement and limiting
types) determine the specific type of nonlinearity and the filter's response after an
overflow. A digital filter that is stable according to a linear model (all poles
inside the unit circle) may nevertheless begin to oscillate when an overflow
occurs. This type of oscillation is called a limit Example 8.4 illustrates
this possibility.

Example 8.4 Two's Complement Limit Cycle
In this example a second-order filter is shown to exhibit an overflow limit

cycle. The filter's transfer function is

The structure is shown in Fig. 8.13. The block labeled NL represents the
nonlinearity that results from two's complement arithmetic. The nonlinear
characteristic is illustrated in Fig. 8.14. If the function NL were a linear function,
the system would be stable, with poles at z,,, = 0.5 _+ j0.5.

A state-variable analysis of the filter uses the outputs of the delay elements as
state variables, as shown in Fig. 8.13.

FIGURE 8.13 Direct Structure with Limit Cycles.

FIGURE 8.14 Two's Complement Overflow Nonlinearity.

8.2 Finite Word-Length Effects 251

With an initial state of xl(0) = 0.8 and x,(O) = -0.8, (8.46) gives

and for n 2 1

Thus, the system oscillates back and forth between the two states

x1 = +0.8, X, = -0.8,
and

X, = -0.8, X, = +0.8,

and is said to be in a limit cycle.
Overflow limit cycles will not occur in the structure of Fig. 8.13 if there is no

overflow to start them and the initial state does not start one. There will be no
overflow if the argument of NL is less than 1. In other words,

Since Ixl,,l < 1, no limit cycles will occur if

This is a rather severe limitation on the filter coefficients and rules out most
practical filters.

Overflow limit cycles can be eliminated by using another nonlinearity, such
as the limiting type of nonlinearity shown in Fig. 8.15.

It has been shown1' that the use of the nonlinearity in Fig. 8.1 5 will guarantee
the absense of large-scale, overflow limit cycles in the direct structure of Fig. 8.2
complement nonlinearity in Example 8.4 is replaced by the nonlinearity in Fig.
8.15, the state decays to zero with zero input. This suggests using the

Input

FIGURE 8.1 5 Limiting Type of Nonlinearity.

252 Implementation of Infinite Impulse-Response Filters

nonlinearity of Fig. 8.15, which can be implemented on the TMS32010 chip by
setting the overflow mode (OVM). However, it is possible to have overflow limit
cycles in the direct structure with the nonlinearity of Fig. 8.15 when the input is
nonzero, as shown by Example 8.5.

Example 8.5 Limit Cycle with Limiting-Type Nonlinearity
The filter in this example is the same as in Example 8.4, except that the

limiting type of nonlinearity, L, shown in Fig. 8.15, is used. The input is a
constant value; that is, x(n) = -0.5 for all n. With the limiting type of
nonlinearity, L, the state equations are

With the same initial state as Example 8.4, x,(O) = 0.8 and x,(O) = -0.8, (8.52)
gives

and, for n 2 2,

The state remains at the constant value of (8.54). This condition is also called a
limit cycle.

The state-variable representation of a second-order digital filter can be used
to obtain conditions for the absence of limit cycles.' A general, linear, second-
order system can be expressed in state-variable form by the equations

If the system is stable (both eigenvalues of the A matrix in (8.55) are < 1) and if
the quantization corresponds to a nonlinearity with the property that

The system is stable i f and only if either of the two conditions holds':

(a) a12a21 3 0,
(b) a12a,, < 0 but (a,, - a,,(+ det A < 1. (8.57)

8.2 Finite Word-Length Effects 253

Both the two's complement and the limiting nonlinearities satisfy condition
(8.56). For example, the direct structure corresponds to

From condition (b) of (8.57), we get

(a,, - a,,(+ det A = lull + a, < 1 (8.59)

as the necessary and sufficient conditions for absence of limit cycles in the direct
structure.

As another example, consider the A matrix for the coupled-form structure,
which is stable for r < 1.

For sin(6) # 0, a,,a,, < 0, and condition (b) of (8.57) gives

(a , , - a,,J + det A = 0 + r2(cos2(6) + sin2(6)) < 1. (8.61)

From (8.61) we see that the coupled-form structure is free of overflow limit cycles
for both the two's complement and the limiting-type of nonlinearities when the
input is zero.

If the nonlinearity is limiting type, then it has been shown4 that no overflow
limit cycles with a nonzero input exist when the conditions in (8.57) are satisfied.
A complete analysis of limit cycles, both overflow and small scale, is contained in
reference 4. Conditions for stability are given in terms of allowed coefficient
ranges for several types of overflow nonlinearities and for direct, coupled, wave
digital, and lattice structures.

Small-Scale L imit Cycles
The overflow limit cycles have full-scale amplitude and can overwhelm any
signal components. The conditions for eliminating this type of limit cycle depend
on the filter structure and the way that overflow is handled. There is another
type of limit cycle that has a much smaller amplitude and depends on the type of
quantization used after a multiplication and on the structure of the filter.''

Small-scale limit cycles often occur when the input to the filter is a constant
and products are rounded. The rounding itself introduces small amplitude
oscillations in the filter. An estimate of the amplitude of the limit cycles has been
given by Jackson2 for a second-order block with a denominator

A(z) = z 2 + a,z + a,. (8.62)

254 Implementation of Infinite Impulse-Response Filters

For a B-bit word length, when rounding is used, the maximum magnitude of a
small-scale limit cycle is estimated to be

where x,,, means the smallest integer less than or equal to x. Equation (8.63)
implies that the amplitude of small-scale limit cycles can be reduced by
increasing the word length (increasing B) and/or by reducing the magnitude of
a,. Reducing the size of a, corresponds to moving the poles away from the unit
circle.

Truncation, rather than rounding, is recommended to eliminate small-scale
limit cycles. For example, the coupled-form structure will have small-scale limit
cycles with rounding but will not have small-scale limit cycles when truncation is
used. See references 2 and 4 for more detail on small-scale limit cycles.

Summary

Section 8.2 covered finite word-length effects for recursive filters. Coefficient
quantization was shown to limit the possible pole locations and therefore limit
the possible frequencies of an oscillator. The degradation of frequency response
of a filter due to coefficient quantization was corrected by redesigning the
unquantized coefficient filter with possibly higher order. The scaling and
quantization noise problems were evaluated in detail for second-order sections.
Filters with poles near the unit circle wcre shown to have more serious
quantization noise problems.

Limit-cycle oscillations were shown to result from the nonlinearities inherent
in a digital filter implementation. The possibility of overflow limit cycles of large
amplitude could be reduced by using limiting-type overflow characteristics.
Small-scale limit cycles were shown to have an amplitude that could be reduced
by using more bits, by moving poles away from the unit circle, or by using
truncation arithmetic.

8.3 MINIMUM-NOISE FILTER REALIZATIONS

As discussed in Section 8.1, many different filter structures have the same
transfer function. One structure is obtained from another by use of the
transformation matrix M. Mullis and Roberts1' have shown how to transform
the state representation of a filter to obtain the minimum possible quantization
noise. Although the minimum-noise structure can be derived for any order filter,
the number of multiplications proportional to N2 for an Nth-order filter,
becomes prohibitive for high-order filters. A compromise realization uses
second-order blocks that individually have the minimum-noise structure in a

8.3 Minimum-Noise Filters Realizations 255

parallel or cascade connection. The overall structure will not have the minimum
possible noise, but it will have low quantization noise, low sensitivity to
coefficient variations, and a reasonably low number of multiplications.

A derivation of the results of Mullis and Roberts" is not presented here.
Instead, we give the equations for a second-order minimum-noise structure9.
This second-order section can then be used in parallel or cascade connections
for higher-order filters, as described in Section 8.1.

For a transfer function,

the direct form has the state-variable representation

and the minimum-noise structure has

C' = r dl cos - d2 sin - , D' = [dl. I (:I (31
The parameters in the minimum-noise representation (8.66) for poles at R 2 jl
are

where dl and d, are scaling constants based on appropriate norms of the
response of the first and second state variables to a unit pulse input. (See Section
8.2.2).

Since the minimum-noise filter has a, ,a2, < 0, a , , = a,,, and det A < 1, the
minimum-noise filters satisfy the conditions (8.57) for stability. If the limiting-
type of nonlinearity shown in Fig. 8.15 represents the way that overflow is

256 Implementation o f Inf inite Impulse-Response Filters

treated, then the minimum-noise filter will not have overflow limit cycles
regardless of whether the input is zero or not.

8.4 DESIGN EXAMPLE

This design example gives a detailed five-step design and implementation of a
fourth-order elliptic filter. The cascade of two second-order blocks is used. Each
block is implemented in the transpose structure. The poles are paired with the
closest zeros. The section with poles nearest the unit circle is used at the output.
Scaling for the filter is performed first for the first second-order section. The
impulse response of this scaled first section is then convolved with each of the
appropriate impulse responses of the second section, and scaling is done on the
second section.

STEP 1. The first step in the design is to decide on the filter specifications. For
this example the specifications call for a fourth-order elliptic filter. The
specifications and the output of Program 9 are given in Fig. 8.16.

a)
Desired pass-band edge 0.25
Desired stop-band edge 0.30
Desired pass-band max. attn. 0.5 dB
Desired stop-band min. attn. 32 dB

c)
Real part Imaginary part Magnitude Phase

Zeros

-0.81 08920e+ 00 0.5851 958e+00 0.1 000000e+ 01 0.251 6471 e+01
-0.81 08920e + 00 - 0.5851 958e + 00 0.1 000000e + 01 -0.251 6471 e +01
-0.3579478e+ 00 0.933741 6e +00 0.1 000000e +01 0.1 936865e +01
-0.3579478e +00 -0.933741 6e +00 0.1 000000e+ 01 -0.1 936865e+01

Poles

0.201 5399e + 00 0.4389205e + 00 0.4829798e + 00 0.1 140341 e + 01
0.201 5399e + 00 - 0.4389205e + 00 0.4829798e + 00 -0.1 140341 e + 01

-0.257091 6e -01 0.8925394e + 00 0.8929096e + 00 0.1 599593e + 01
-0.257091 6e - 01 -0.8925394e + 00 0.8929096e + 00 -0.1 599593e +01

FIGURE 8.1 6 Fourth-order elliptic low-pass design example (a) specifications; (b) Transfer
function; (c) zeros and poles.

8.4 Design Example 257

STEP 2. The next step is to decide on the structure for implementing the filter, as
described in Section 8.1. The cascade structure in Fig. 8.5 was chosen for this
example. Each second-order block was implemented with the transpose
structure shown in Fig. 8.3. The poles farthest from the unit circle were used for
the first section in Fig. 8.17. The pair of zeros closest to these poles was used.

STEP 3. To scale section 1, we calculated the impulse response and frequency
response from the input x to each of three points where overflow could occur;
these points are labeled y,,, yI2, and y , in Fig. 8 .17~. For the impulse response
to the output of the section, y,, the 1, and 1, norms are 5.30748 and 2.7843,
respectively. The maximum value of the frequency response, shown in Fig. 8.18,

FIGURE 8.17 (a) Coefficients for Section 1; (b) Impulse response to y, for Section 1.

1
2.024854 1.8
1.582892
0.1 656869 1.5

-0.302451 8
-0.1 605585

1.2

5.83541 4E-03 0.9
3.980495E42
1.468299E-02 0.6

-3.366872E43 0.3
-4.7821 31 E 4 3
-1.1421 58E43 0
6.551 397E-04 -0.3

I I I I
-

-

-

I I I I
5.304941 E 4 4 0 10 20 30 40

i
50

6.1 00444E45 Time
-9.91 5724E45
-5.41 9761 ~ 4 5 ll norm =5.30748
1.284583~46 1, norm -2.7843 (b)

258 Implementation of Infinite Impulse-Response Filters

Frequency

Frequency

(Expanded Scale)

FIGURE 8.18 Frequency response to output of Section 1.

is 4.38. The impulse response y,, and its Fourier transform, the frequency
response H , , , are shown in Figs. 8.19 and 8.20, respectively. The impulse
response y,, and frequency response HI, are shown in Figs. 8.21 and 8.22. The
three different measures of gain are shown in Table 8.1 for each of the three
locations in Section 1.

Figure 8.23 shows the scaled coefficients for section 1, which were obtained by
dividing the original numerator coefficients by the I , norm of the impulse
response y,, the largest 1, norm. This scaling strategy is the most conservative.

TABLE 8.1. Norms for Scaling Section 1

location I, norm I, norm max IH(f)l
----pp--p-ppp

1 5.30748 2.7843 4.38
11 1.771 5 0.9774 1.28
12 4.30748 2.5985 3.67

Transfer function t o y, , :

A,, , , , = -0.4030702997

A,, , ,, = 0.2332661 953
B,, , ,, = 0.766733805
B,, , ,, = -0.781377681

B,, 12, = 0.0

I, norm = 1.771 5
I, norm =0.9774

FIGURE 8.19 (a) Transfer function to location J , , in Section I: (b) Impulse response to location
y,, in Section 1.

Frequency

FIGURE 8.20 Frequency response to location y, , in Section 1.

Section 1 Transfer function to y , , :

A,,,, = -0.4030702997
A,,,,, = 0.2332661 953
B,, ,,, = 2.024854296
B,, ,, , = 0.766733805
B(, ,,, = 0.766733805

B,,,,, = 0.0

1, norm =4.30748
1, norm = 2.59849

Time

(b)

FIGURE 8.21 (a) Transfer function to location y,, in Section 1 ; (b) Impulse response to location
y,, in Section 1.

Frequency

Frequency
(Expanded Scale)

FIGURE 8.22 Frequency response to location y,2 in Section 1 .

8 .4 Design Example 263

Scaled, quantized coefficients:

(original b coeff. divided by 5.30748)

decimal hex
a , , = -0.4030703 CC68
a, , = 0.2332662 1 DDC
b, , = 0.1 8841 33 181E
b , , = 0.3055656 271 D
b, , = 0.18841 33 181E

FIGURE 8.23 Scaled, quantized coefficients for Section 1 .

STEP 4. To scale section 2, we calculated the impulse response and frequency
response from the second stage input, x , to each of three points where overflow
could occur; these points are labeled y,, , y,,, and y , in Fig. 8 .24~. Because we
are interested in scaling according to the input, x , of the filter, not the input of
the second section, these three impulse responses are convolved with the impulse
response of the scaled section 1. In this way the impulse response is calculated
from the filter input x to the three locations in the second section, y,, , y,,, and

FIGURE 8.24 Coefficients for Section 2.

264 Implementation of Infinite Impulse-Response Filters

TABLE 8.2. Norms for
Scaling Section 2

location I, norm

scaled, quantized coefficients:

(original b coefficients divided by 2.855274)

Decimal Hex
a,, = 0.051 421 4 0695
a,, = 0.7972861 660D
b,, = 0.35022908 1 A00
b,, = 0.25072745 129D
b,, = 0.35022908 1 A00

FIGURE 8.25 Scaled, quantized coefficients for Sectlon 2.

y,. For the impulse response to the output of the section, y,, the 1, norm is
2.85527. The other two impulse response responses have smaller norms, as
shown in Table 8.2.

Figure 8.25 shows the scaled coefficients for section 2, which were obtained by
dividing the original numerator coefficients by the I , norm of the impulse
response y,, the largest 1, norm. This scaling strategy is the most conservative.

STEP 5. The scaled coefficients calculated in steps 3 and 4 were used in an
assembly language program implementing the cascade of two transpose
structure second-order sections. Program 12 in the appendix is a complete
assembly language program for the TMS32010.

References 265

The entire five-step procedure was repeated for a cascade of two second-order
sections where each section was implemented in the direct form. The details have
been omitted since they are essentially the same as for the transpose structures.
Program 13 is an assembly language program for this direct structure
implementation.

REFERENCES

R. A. Roberts and C. T. Mullis, Digital Signal Processing, Reading, MA: Addison-
Wesley, 1987.

L. B. Jackson, Digital Filters and Signal Processing, Boston: Kluwer, 1986.

L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1975.
K. T. Erickson and A. N. Michel, "Stability Analysis of Fixed-Point Digital Filters
Using Generated Lyapunov Functions-Parts I and 11," IEEE Trans. Circuits
Systems CAS-32, 11 3-142 (1985).

J. F. Kaiser, "Some Practical Considerations in the Realization of Linear Digital
Filters," Proceedings of the Third Allerton Conference on Circuit and System
Theory, pp. 621-633, October 1965.
C. M. Rader and B. Gold, "Effects of Parameter Quantization on the Poles of a
Digital Filter," Proc. IEEE 55, 688-689 (1967).

A. H. Gray and J. D. Markel, "Digital Lattice and Ladder Filter Synthesis," IEEE
Trans. Audio Electroacoustics AU-21, 491-500 (1973).

A. Fettweis, "Digital Filter Structures Related to Classical Filter Networks," Arch.
Elek. Ubertragung 25, 79-89 (1971).
P. M. Ebert, J. E. Mazo, and M. G. Taylor, "Overflow Oscillations in Digital
Filters," Bell System Tech. J . 48, 2999-3020 (1969).

H. W. Schiissler, Notes for a Seminar on Wordlength Effects in Nonrecursive and
Recursive Filters, Rice University, 1984.

H. W. Schiissler, Digitale Systeme zur Signalverarbeitung, New York: Springer-
Verlag. 1973.

P. M. Ebert, J. E. Mazo, and M. G. Taylor, "Overflow Oscillations in Digital
Filters," Bell System Tech. J . 48, 2999-3020 (1969).

C. T. Mullis and R. A. Roberts, "Synthesis of Minimum Roundoff Noise Fixed
Point Digital Filters," IEEE Trans. Circuits Systems CAS-23, 551-561 (1976).

Part IV

Summary

Summary

This summary chapter reviews the highlights of the book, comparing and
relating the various aspects of the approximation and realization problems in
digital filter design. Section 9.1.1 summarizes the key features of FIR filters, and
Section 9.1.2 focuses on IIR filters.

9.1 COMPARISON OF FILTERING ALTERNATIVES

9.1.1 FIR Digital Filters

An FIR digital filter has a finite-duration unit-pulse response. Its transfer
function is a polynomial in z - l.

A length-N filter has a transfer function that has N - 1 zeros in the z plane and
has an order N - 1 pole at the origin of the z plane.

An FIR filter is called an all-zero filter because it has zeros but no poles other
than that at the origin.

An FIR digital filter can have exactly linear phase. In other words, the group
delay of the filter can be a constant. This linear-phase property results from
symmetry of the unit-pulse response of the filter. An IIR filter has an infinite-
duration unit-pulse response that cannot be symmetric if it is causal (= 0 for
n < 0). Therefore, an IIR filter cannot have exactly linear phase. Of course, an

270 Summary

IIR filter can be designed with a good approximation to linear phase, at least
over a limited band of frequencies. The delay of a causal linear-phase FIR filter
of length N is exactly (N - 1)/2. The required filter length N increases when
sharp transitions between frequency bands are specified, and/or large at-
tenuations are required in the stop bands. Thus, high-performance, linear-phase
filters with sharp cutoffs and large attenuations necessarily are long and have
large, though constant, delays and a large number of coefficients to be stored.

When a precisely constant delay is not required for all frequencies, better FIR
filters can be designed. When the group delay is of little concern, the minimum-
phase FIR filter may be a good choice. We can design a filter that has the best
magnitude characteristics, in the Chebyshev sense, and a minimum phase shift.
These minimum-phase filters generally have better magnitude characteristics for
the same length N than do linear-phase filters. The group delay, though
minimal, is usually far from a constant. For low-pass filters the delay is quite
small at zero frequency and increases rapidly near the band edge. When a better
group delay is required, complex approximation techniques can be applied to
give a good, small, though not exactly constant, group delay with good
magnitude characteristics.

One new problem with the complex design of FIR filters is the specification of
the desired group delay or phase. If too small a delay is requested, the best
Chebyshev approximation has large errors and the filter is not useful. Generally,
a delay between one half and three quarters of the delay of the same length
linear-phase filter is a good choice. The choice of desired delay depends, of
course, on the band edges specified for the filter. Wide-band filters can have less
delay, for the same Chebyshev error, than narrow-band filters can.

The approximation problem for both FIR and IIR filters is solved in one of
two ways. Either a closed-form, analytic expression is used, possibly with
suitable transformations, or a numerical optimization procedure is used to solve
for the coefficients of the filter. One family of closed-form analytical design
formulas for FIR filters gives an optimal LS error approximation to an ideal
low-pass filter with a spline or trigonometric function transition region. A
second family is based on windowing the design of a LS error approximation in
order to reduce the Chebyshev error at the expense of the squared error.

Numerical procedures for FIR design may be divided into two categories.
Methods like frequency sampling and LS error minimization require solving a
set of linear equations. Other methods, such as linear programming and the
Remes exchange algorithm, are iterative and generally take more time than the
frequency-sampling and LS methods.

Programs are provided in the appendix to design FIR filters using window-
ing, frequency sampling, and LS-error minimization. A program is also provided
for the Parks-McClellan algorithm, which designs filters with minimum
Chebyshev error and equiripple frequency characteristic. It usually takes longer
to design an FIR filter with an iterative procedure like the Parks-McClellan
algorithm than it does to design an IIR filter of approximately equivalent
performance with analytic expressions and transformations. However, a wider

9.1 Comparison of Filtering Alternatives 271

range of specifications can be met with the numerical optimization approach
than with the analytical approach to the approximation problem. As described
in Chapter 4, FIR filters can be designed to meet arbitrary complex-frequency
specifications with minimal Chebyshev error by using linear programming.

The realization or implementation of an FIR filter with fixed-point arithmetic
is much easier and more trouble free than the implementation of an IIR filter.
The direct, nonrecursive implementation of the FIR filter where the output is
calculated as a weighted linear combination of present and past inputs is always
stable. For filter lengths of up to 100 the coefficients are not very sensitive to
quantization. The unit-pulse response coefficients can be implemented with 12
to 16 bits with little degradation of the frequency response. If shorter word
length is desired, an optimization program is available that will solve the
approximation problem with quantized coefficients. The coefficients of the filter
are easily scaled to avoid overflow, and the quantization noise problems are not
severe when the products of filter coefficients and input samples are accumulated
in a double word-length register. The only significant difficulty in implementing
FIR filters is the large amount of memory required to store the present and past
N values of the input signal for a length-N filter. The FIR filter also has more
filter coefficients to store than an IIR filter with similar performance. This
problem should become less important as memory becomes more readily
available. Another possible disadvantage of the large number of coefficients in
the FIR filter arises when the coefficients are changed often, as in adaptive
filtering applications.

Long FIR filters can also be efficiently implemented by using special
hardware, such as array processors, for computing the required inner products.
The necessary convolution can be implemented by fast convolution techniques
using the FFT or by table lookup, using distributed arithmetic.

9.1.2 IIR Digital Filters

An IIR filter has an infinite-duration unit-pulse response. The transfer function
of an IIR filter, as described in this book, is a rational function of z - ' :

This function is also written as a rational function of z:

Unlike analog filters, where the order of the numerator must be less than or
equal to the order of the denominator, a digital filter can have N greater than,
equal to, or less than M. In addition to the order N - M zero or pole at the
origin, the filter has M zeros and N poles in the z plane.

An IIR filter can generally achieve a sharper transition between band edges
than an FIR filter can with the same number of coefficients. The reason is that
the IIR filter has a pole near the edge of the pass band and a nearby zero at the
edge of stop band. Since an FIR filter cannot have poles (except at the origin), it
cannot achieve the same sharp cutoff. The closely spaced pole and zero, which
produce the desired sharp change in magnitude characteristic of the filter, also
produce a rapid change in phase and phase slope for frequencies near the pole
and zero. The closely spaced pole and zero lead to a rapid change in group delay
for frequencies approaching the band edge. It is not possible for an IIR filter to
have exactly constant group delay for all frequencies. Minimum-phase, low-pass
IIR filters with sharp transitions between the pass band and stop band typically
have a small group delay at zero frequency that increases rapidly at frequencies
near the band edge.

An IIR filter can have precisely constant magnitude (an all-pass filter). All-
pass IIR filters can be used as phase or delay equalizers to compensate for the
delay distortion present in minimum-phase systems. However, all-pass IIR
equalizers are difficult to design. Recent work has shown that FIR equalizers,
designed with the techniques described in Chapter 4, can have characteristics
similar to, if not better than, IIR equalizers. Furthermore, FIR equalizers are
easier to implement than IIR equalizers.

Implementing IIR filters with a recursive realization in fixed-point arithmetic
is much more difficult than the direct, nonrecursive implementation of an FIR
filter. Much greater care must be taken in the scaling of the filter coefficients.
When there is an overflow in a recursive filter, large-scale oscillations (limit
cycles) can occur, which obscure any useful output from the filter. Because of
internal rounding of the signal variables, small-scale limit cycles can also occur,
adding a small but annoying noise to the filter output. The design example in
this book has a small-scale limit cycle.

Quantization noise can be more of a problem than in nonrecursive filters
because of the recursive nature of the calculation. The double-length product of
two numbers must be quantized in order to be fed back in the recursion. The
frequency response, and even the stability, as determined from the pole
locations, is sensitive to quantization of the filter coefficients. This sensitivity
rules against directly implementing the difference equation implied by (9.3).
Cascade or parallel connections of low-order blocks are better implementations
for recursive filters.

An IIR filter has an advantage over an FIR filter in that it generally has
fewer coefficients than an FIR filter with similar magnitude characteristics, so
less memory is required to store the coefficients. A more significant memory
saving occurs because only a few of the recent input values need to be stored, in
contrast to the FIR case where N input values need to be stored for a length-N
filter. Even though the IIR filter has an infinite memory-that is, its output
depends on the infinite past input-the filter memory is stored in the state
variables of the recursive filter. The memory of the filter arises from the storage
of past outputs as well as past inputs.

9.1 Comparison of Filtering Alternatives 273

Even though the IIR filter has fewer coefficients than an equivalent FIR filter,
it still may take less time to compute an output sample for the equivalent FIR
filter. The reason is the regularity of the VLSI structure for implementing the
nonrecursive filter as compared to the irregular structure required for the
recursive filter. For example, with the TMS32020 signal piocessor, the nonre-
cursive calculation requires approximately one fifth of the time per coefficient of
the recursive calculation. In other words, for the same computing time the FIR
filter can have approximately five times as many coefficients as an IIR filter. The
exact relation for computing times depends, of course, on the particular
programs used to implement the filters. In applications where the coefficients of
the filter are updated in real time (e.g., adaptive filtering), the advantage of fewer
coefficients in the IIR filter may be significant. Distributed arithmetic is more
attractive for IIR filters than for FIR filters because of the lower order. However,
the use of FFTs for implementing an IIR filter requires a block recursive
structure and is not as effective as for the FIR filter.

9.2 DESIGN ENVIRONMENT

Because of interrelated steps in the approximation and realization parts of the
filter design process, interactive design programs must be available on a
computer. The FORTRAN programs in the appendix and/or those available in
the IEEE Press program book or from commercial sources can provide that
environment for the approximation problem. The realization problem requires a
simulation program to analyze the quantization effects in a particular re-
alization of a filter. The simulator must be specialized for the particular
hardware or computer implementation; therefore, it is not included in this book.
Certain simulation programs are available for the TMS320 family of signal
processors from Texas Instruments, Inc., and others. A fairly general program,
called DOREDI, for analyzing the effects of finite word-length effects in
realizations of IIR filters is available in the IEEE Press program book.

s Appendix

This appendix contains FORTRAN programs for designing FIR and IIR filters.
Most of the programs are written with a notation and organization that follows
the theoretical development in the book. Studying the programs should help
you understand the theory, and vice versa. They are written to utilize very
efficient algorithms and formulas, but they do not incorporate all the user-
friendly input/output characteristics or error-handling capabilities of commer-
cial products. The exception is the Parks-McClellan program, which has been
developed over several years. The programs, in general, use a basic structure
that the user can modify as necessary.

1. A FORTRAN PROGRAM FOR LINEAR-PHASE
LOW-PASS FIR FILTER DESIGN USING
FREQUENCY SAMPLING

The FORTRAN program is a system for designing a length-N, linear-phase,
low-pass FIR digital filter with a frequency response that interpolates N
specified values. These N values are usually samples of a desired continuous-
frequency response. After the filter is designed, its frequency response is
calculated for analysis. The basic theory, formulas, variable names, and
references are chosen to follow the development in Section 3.1.

The main program starts with a section that takes input specifications from
the terminal. The length of the desired FIR filter is entered as N. Next follows
the cutoff frequency or band edge in hertz, where we assume a sampling rate of
1.0 and N equally spaced frequency samples. The next input distinguishes the

276 Appendix

two possible sampling schemes described in Section 3.1. Entering 0 for DC
specifies a sample at w = 0, and entering 1 specifies that the samples are shifted
one-half interval, so there is no sample at w = 0. A value for K is entered to set
the number of equally spaced frequencies at which the frequency response is
evaluated in the analysis section of the program.

In the next section of the program, the desired frequency-response samples of
a low-pass filter are loaded into the array A(J) . These are set to be 1 or 0,
according to the input specification FP. This section would be changed in order
to design something other than a simple low-pass filter.

The actual design of the filter is performed in the D O 15 and D O 21 loops,
where design formulas (3.4), (3.6), (3. lo), and (3.1 2) are evaluated. The first half of
the symmetric impulse response is written to the terminal as the coefficients of
the designed filter. The frequency response of the filter is calculated at K equally
spaced frequencies by the subroutine FREQ(), which implements (3.2) and (3.5);
these values are written to the file fm. If K is set equal to N, the output of the
frequency-response calculation should give the 1's and 0's that were the input
samples in the array A(J).

This program was used to design the filters in Examples 3.1 and 3.2, and a
modified version was used for Example 3.4. It could have also been used in
Example 3.3. The input and A(J)-setting sections could easily be modified to
allow any desired samples to be specified. Because this scheme is an inter-
polation method, the analysis of the frequency over a fairly large range is
important for examining the behavior between the sample points.

As pointed out in Section 3.2.1, this frequency-sampling design program can
be used to design optimal LS error approximations over L frequency samples by
designing a length-L filter and symmetrically truncating the impulse response to
the desired length N. It will give the same results as Program 2 for equally
spaced samples and no weighting, but it runs faster and has less numerical error.

FREQUENCY SAMPLING OR INTERPOLATION FOR FIR FILTERS
TRUNCATION YIELDS OPTIMAL LEAST-SQUARES DESIGN
DESIGN PROGRAM FOR A LINEAR PHASE LOWPASS FILTER

FILTER LENGTH AND NO. OF FREQ SAMPLES = N
BANDEDGE IN HZ = FP, FOR SAMPLING RATE = 1
FREQ. SAMPLE A1 DC: DC = 0
NO FREQ. SAMPLE AT DC: DC = 1
FREQUENCY RESPONSE CALCULATED AT K POINTS

C.S. BURRUS, RICE UNIVERSITY, JAN 1987 ... -
REAL X(101), A(101), B(1001)

C----------------------INpUT------------------------------
WRITE (6,100)

5 WRITE (6,110)
READ (5,*) N, FP, DC, K
M = (N+1)/2
AM = (N+1.0)/2.0

C------------SET DESIRED FREQ RESPONSE--------------------
10 DO 11 J = 1, NP

A(J) = 1.0
11 CONTINUE

DO 12 J = NP+l, M1
A(J) = 0.0

12 CONTINUE
IF (DC.EQ.l) GOT0 18

-. - - -

XT = XT-i ~ (1) *COS (Q* (AM-J) * (1-1))
14 CONTINUE

X(J) = 2.0*XT/N
15 CONTINUE

GOT0 21
c------------Typ~ l&2 , NO DC FREQ SAMPLE-----------------

18 DO 21 J = 1, M
XT = 0
DO 20 I = 1, N2

XT = XT + A (I) *COS (Q* (AM-J) * (1-0.5))
20 CONTINUE

IF (AM.NE.M) XT = XT + A(M) *COS (3.141592654* (AM-J)) /2
X(J) = 2*XT/N . .

21 CONTINUE

C--------------------OUTpUT-------------------------------
WRITE (6,120) (X(J) ,J=l,M)
CALL FREQ (X, B,N,K)
OPEN (1,FILE ='fmr)
REWIND(1)
DO 50 J = 1, K+l

F = 0.5*(J-1)/K
WRITE (1,130) F, ABS(B(J))

50 CONTINUE
100 FORMAT ('FREQUENCY SAMPLING DESIGN OF A LOWPASS FILTER')
110 FORMAT ('ENTER: N, FP, DC, K')
120 FORMAT (9F8.5)
130 FORMAT (5X,F15.8,E15.8)

GOT0 5
END

C-------------------END OF MAIN PROGRAM---------------------
SUBROUTINE FREQ (X,A,N, K)
REAL X(l), A(1)

C
Q = 3.141592654/K
AM = (N+l) *0.5
M = (N+1)/2
N2 = N/2
DO 20 J = 1, K+1

AT = 0
IF (AM.EQ.M) AT = 0.5*X(M)
DO 10 I = 1, N2

AT = AT + X(1) *COS (Q* (AM-I) * (J-1))
10 CONTINUE

A(J) = 2*AT
20 CONTINUE

RETURN
END

278 Appendix

2. A FORTRAN PROGRAM FOR LINEAR-PHASE
LOW-PASS FIR FILTER DESIGN USING A
DISCRETE LEAST SQUARED
ERROR CRITERION

The FORTRAN program is a system for designing a length-N, linear-phase,
low-pass FIR digital filter with a frequency response that is a LS error
approximation to a set of L desired values. These L values are usually samples of
a desired continuous-frequency response. If L is equal to N, the approximation
can be exact, and this program gives the same results as a frequency-sampling
design. After the filter is designed, its frequency response is calculated for
analysis. The basic theory, formulas, variable names, and references are chosen
to follow the development in Section 3.2.1.

The main program starts with a section that takes input specifications from
the terminal. The length of the desired FIR filter is entered as N. The number of
frequencies over which 10 calculate the approximation is entered as L, where
L 2 N. Then follows FP, the cutoff frequency or band edge in hertz, where we
assume a sampling rate of 1.0 and L equally spaced frequency samples. The next
input distinguishes the two possible sampling schemes described in Section 3.1.
Entering 0 for DC specifies a sample at o = 0, and entering 1 specifies that the
samples are shifted one-half interval, so there is no sample at o = 0. A value for
K is entered to set the number of frequencies at which the frequency response is
evaluated in the analysis section of the program.

In the next section the desired frequency response samples of a low-pass filter
are loaded into the array A(J). These samples are set to be 1 or 0, according to
the input specifications FP, DC, and N being even or odd. This section would be
changed in order to design something other than a simple low-pass filter.

The next section calculates the frequency-response matrix F defined in (2.25)
by using (3.2) and (3.5). If L = N, the result is the same as frequency sampling. If
L > N, (2.25) is overdetermined and F is rectangular. An approximate solution
to these equations is found by solving the normal equations of (3.19) by solving
(3.20). However, this program uses the efficient and accurate subroutines
SQRDC() and SQRSL() contained in the matrix software system LINPACK.
These subroutines are covered in reference 7. Their output, which is the solution
of the normal equations, is the first half of the symmetric impulse response,
which is written to the terminal as the coefficients of the designed filter. The
frequency response of the filter is calculated at K equally spaced frequencies by
the subroutine FREQ(), which implements (3.2) and (3.5); these values are
written to the file fm.

This program provides the basis of a versatile and powerful FIR filter design
system. At one extreme, for L = N, it designs according to a frequency-sampling
criterion. At the other extreme, for L >> N, it gives a good approximation to the
true continuous LS error design used in Programs 3, 4, and 5, yet it allows
arbitrary ideal specifications. The input section can easily be modified to accept

2. A Fortran Program using a Discrete Least Squared Error Criterion 279

arbitrary input to the array A(J). However, numerical problems may exist for a
long filter with L >> N.

The advantage of this program over Program 1 comes from the ability to
modify it for unequally spaced frequency points by changing the section that
creates the F matrix. This modification allows us better control of the
approximation because we can use a denser grid near a discontinuity. We can
add a weight function according to (3.22), which can also allow greater control
of the approximation. We can define a transition band by using a small weight in
the "don't care" transition region, and by using a general expression for the
frequency-response matrix F, rather than the one for linear phase, we can
generalize the program to do complex approximation.

If equally spaced frequency samples and no weights are satisfactory, do not
use this program. Use Program 1 for a frequency-sampling design with filter
length L and truncated that result to the desired length N. That will do the same
thing this program does, but it will be faster and have less numerical roundoff
error.

C DISCRETE LEAST SQUARE ERROR FIR FILTER
C FILTER LENGTH = N
C NO. OF FREQUENCY SAMPLES = L
C BANDEDGE IN HZ = FP FOR SAMPLING RATE = 1
C FREQ. SAMPLE AT DC: DC = 0
C NO FREO. SAMPLE AT DC: DC = 1
c FREQUENCY RESPONSE CALCULATED AT K POINTS
C C.S. BURRUS, RICE UNIVERSITY, JAN 1987
c--

REAL X(101), A(501), B(1001)
REAL F (501,101), QAX(101)

--------------SET PWTERS-------------------------------------
LDX = 501
WRITE (6,100)

5 WRITE (6,110)
READ (5,*) N, L, FP, DC, K

LP = L*FP + 1.0
QJ = 1.0

IF (DC.EQ.0) GOT0 18
L2 = LM
LP = L*FP + 0.5
QJ = 0.5

C-------------SET THE DESIRED FREQ RESPONSE---------------------
D O 6 J = 1 , L

A(J) = 0.0
6 CONTINUE

IF (MOD(N,2) .EQ.O) GOT0 8
DO 7 J = 1, LP

A(J) = 1.0
A(L-J+1) = 1.0

7 CONTINUE
GOT0 15

8 D O 9 J = l , L P
A(J) = 1.0
A(L-J+1) =-1.0

9 CONTINUE
GOT0 15

18 DO 10 J = 1, L
A(J) = 0.0

10 CONTINUE
IF (MOD(N.2) .EQ.O) GOT0 12
A(1) = 1.0
DO 11 J = 2, LP

A(J) - 1.0
A(L-J+2) = 1.0

11 CONTINUE
GOT0 15

12 A(1) = 1.0
DO 15 J = 2, LP

A(J) = 1.0
A(L-J+2) =-1.0

15 CONTINUE

- ~

QI = Q*?&-I)
DO 20 J = 1, L

F(J, I) = 2*COS (QI*(J-QJ))
2 0 CONTINUE
30 CONTINUE

CALL SQRDC (F, LDX, L, MI QAX, DUM, DUM, 0)
CALL SQRSL (F, LDX, Lt M, QAXt A, DUMt A, XI DUMt DUMP 100, INFO)
IF (MOD(N,2) .NE.O) X(M) = 2.0*X(M)

c----------------------OUTpUT-----------------------------------

WRITE (6,120) (X(J), J=l,M)
CALL FREQ (X, B, N, K)
OPEN (1, FILE =' f m t)
REWIND (1)
DO 50 J = 1, K+1

FF = 0.5*(J-1)/K
WRITE (1,130) FF, ABS (B(J))

50 CONTINUE
100 FORMAT ('LEAST SQUARE ERROR DESIGN OF A LOWPASS FILTER')
110 FORMAT ('ENTER: N, L, FP, DC, K')
120 FORMAT (9F8.5)
130 FORMAT (5X, F15.6,E15.8)

GOT0 5
END

C------------------END OF MAIN PROGRAM------------------------
C

SUBROUTINE FREQ (X, A, N, K)
REAL X(l), A(1)

C
Q = 3.141592654/K
AM = (N+l) *0.5
M = (N+1)/2
N2 = N/2
DO 20 J = 1, K+l

AT = 0
IF (AM.EQ.M) AT = 0.5*X(M)
DO 10 I = 1, N2

AT = AT + X(1) *COS (Q* (AM-I) * (J-I))
10 CONTINUE

A(J) = 2*AT
20 CONTINUE

RETURN
END

3. A Fortran Program also using a Transition Region 281

3. A FORTRAN PROGRAM FOR LINEAR-PHASE LOW-PASS
FIR FILTER DESIGN USING A LEAST SQUARED
ERROR CRITERION AND A TRANSITION REGION

The FORTRAN program is a system for designing a length-N, linear-phase,
low-pass FIR digital filter with a frequency response that is a LS error
approximation to an ideal low-pass frequency response with a transition region
as shown in Fig. 3.lb amd Fig. 3.16. A choice of a P-order spline or a raised
cosine transition function is given. After the filter is designed, its frequency
response is calculated for analysis. The basic theory, formulas, variable names,
and references are chosen to follow the development in Sections 3.2.1 and 3.2.2.

The main program starts with a section that takes input specifications from
the terminal. The length of the desired FIR filter is entered as N. Then follows
FP, the pass-band edge in Hertz and FS, the stop-band edge in hertz; both
assume a sampling rate of 1.0. Next, an integer T P is entered to specify the type
of transition function to be used. Enter 0 for a raised cosine transition function, 1
for a first-order spline (straight-line) transition function, 2 for a second-order
spline, and, in general, an integer P for a P-order spline transition function. A
value for K is entered to set the number of frequencies at which the frequency
response is evaluated in the analysis section of the program.

The subroutine LS() calculates the impulse response from (3.29) for an ideal
rectangular low-pass response with a band edge at the average of F P and FS.
The subroutine WGT() calculates the various weight functions by using (3.32)
and (3.33), which result from the transition functions, and multiplies them by the
ideal impulse response to give the actual filter coefficients. The first half of the
symmetric impulse response is written to the terminal as the coefficients of the
designed filter. The frequency response of the filter is calculated at K equally
spaced frequencies by the subroutine FREQ(), which implements (3.2) and (3.5);
and these values are written to the file fm.

This program gives an optimal LS error approximation to the ideal low-pass
filter with a transition region. It is fast and very accurate, even for large .V.
because the design is analytical rather than numerical. The transition region
allows us to control the design by the specifications. The choice of transition
function and the length-N control the residual approximation error.

LEAST SQUARE ERROR FIR FILTERS WITH A TRANSITION REGION
DESIGN PROGRAM FOR A LINEAR PHASE LOWPASS FILTER
FILTER LENGTH = N

PASSBAND EDGE IN HERTZ = FP
STOPBAND EDGE IN HERTZ = FS, FOR SAMPLING RATE = 1

TRANSITION TYPE = TP: 0. RAISED COSINE. 1. LINEAR, 2. 2ND ORDER,
3 . 3RD ORDER, 4. 4TH ORDER, ETC.; FP=FS=NO TRANSITION

FREQUENCY RESPONSE CALCULATED AT K POINTS
C.S. BURRUS, RICE UNIVERSITY, JAN 1987 ...
INTEGER TP
REAL X(101), B(1001)

C--------------------INpUT SPECIFICATIONS-----------------
WRITE (6,100)

7 WRITE 16,110)
READ (5,;) N; FP, FS, TP, K
M = (N+1) /2
FQ = FS - FP
FR = FS + FP

C--------------------DESIGN------------------------------
CALL LS (X, N, FR, FQ)
CALL WGT (X, N, TP, FR, PQ)

C--------------------OUTprn------------------------------
WRITE (6,120) (X(J),J=l,M)
CALL FREQ (X,B,N,K)
OPEN (1,FILE =Ifme)
REWIND (1)
DO 50 J = 1, K+1

F = 0.5*(J-1)/K
WRITE (1,130) F, ABS(B(J))

50 CONTINUE
100 FORMAT ('LEAST SQUARE DESIGN WITH A TRANSITON REGION')
110 FORMAT ('ENTER: N, FP, FS, TP, K')
120 FORMAT (9F8.5)
130 FORMAT (5X,F15.8,E15.8)

GOT0 7
END

C---------------END OF MAIN PROGRAM--------------------
L

SUBROUTINE LS (X, N,FP, FQ)
REAL X(1)

C
P = 3.141592654
M = (N+1) /2
AM = (N+1.0)/2.0
N2 = N/2
IF (M.EQ.AM) X(M) = FP
DO 10 J = 1, N2

Q = P*(J - AM)
X(J) = (SIN(FP*Q) /Q

10 CONTINUE
RETURN
END

C------------------mIGHTS-----------------------
SUBROUTINE WGT (X, N, TP, FP, FQ)
INTEGER TP
REAL X(1)

C

1 DO 11 J = 1, AM-1~
Q1 = Q* (J-AM) /TP
WT = (SIN(Q1) /Q1) **TP
X(J) = WT*X(J)

11 CONTINUE
RETURN

C--------------RAISED COSINE---------------------
5 DO 15 J = 1, AM-1

WT = COS (Q* (J-AM))
IF (ABS(WT) .GT.l.OE-6) GOT0 13 . . .

WT = P/4.0
GOT0 14

13 WT = WT/ (1- (2*FQ* (J-AM)) **2)
14 X(J) = WT*X(J)
15 CONTINUE
7 RETURN

END

4. A Fortran Program also using Optional Windows 283

c-------------- FREQUENCY RESPONSE-------------
SUBROUTINE FREQ (X, A, N, K)
REAL X(1), A(1)

C
Q = 3.141592654/K
AM = (N+1)*0.5
M = (N+1) /2
N2 = N/2
DO 20 J = 1, K+1

AT = 0
IF (Al4.EQ.M) AT = 0.5*X(MI
DO 10 I = 1, N2

AT = AT + X(1) *COS (Q* (AM-I) * (J-I))
10 CONTINUE

A(J) = 2*AT
20 CONTINUE

RETURN
END

4. A FORTRAN PROGRAM FOR LINEAR-PHASE LOW-PASS
FIR FILTER DESIGN USING A LEAST SQUARED
ERROR CRITERION AND OPTIONAL WINDOWS

The FORTRAN program is a system for designing a length-N linear-phase, low-
pass FIR digital filter with a frequency response that is an LS error approxi-
mation to an ideal low-pass frequency response. Filters designed with this error
criterion exhibit a ripple or oscillation in their frequency response, called the
Gibbs phenomenon. When this oscillation is undesirable, we can use one of five
window functions to reduce it. After the filter is designed, its frequency response
is calculated for analysis. The basic theory, formulas, variable names, and
references are chosen to follow the development in Sections 3.2.1 and 3.2.3.4.

The main program starts with a section that takes input specifications from
the terminal. The length of the desired FIR filter is entered as N. Then follows
FP, the cutoff frequency or band edge in Hertz, where we assume a rate of 1.0.
Next, an integer T P is entered to the type of window function used to truncate
the ideal, infinitely long, impulse response. Enter 0 for a rectangular window
(simple truncation), 1 for Bartlett, 2 for Hanning, 3 for Hamming, 4 for
Blackman, or 5 for Kaiser. If the Kaiser window is chosen, a parameter BET
with values in the range of 2 to 15 must be entered. A value for K is entered to set
the number of frequencies at which the frequency response is evaluated in the
analysis section of the program.

The subroutine LS() calculates the ideal impulse response from (3.29). The
subroutine WIND() calculates the various window functions, using (3.40)
through (3.42), and multiplies them by the ideal impulse response to give the
actual filter coefficients. The Kaiser window requires calculation of a Bessel
function, which is done by the FORTRAN function 10 (). The first half of the
symmetric impulse response is written to the terminal as the coefficients of the
designed filter. The frequency response of the filter is calculated at K equally
spaced frequencies by the subroutine FREQ(), which implements (3.2) and (3.5);
these values are written to the file fm.

284 Appendix

This program gives an optimal least mean squared error approximation to
the ideal low-pass filter. It is fast and accurate, even for large N, because design is
analytical rather than numerical. Unfortunately, therefore, it is not easy to
modify it to approximate something other than a simple, constant-magnitude
ideal. The windows give some flexibility, but they destroy the optimality. The
Kaiser window is probably the most useful tradeoff of ripple and transition
width. An input section could be added to take ripple and transition width and
calculate N and BET.

LEAST SQUARE ERROR AND WINDOWS FOR FIR FILTERS
DESIGN PROGRAM FOR A LINEAR PHASE LOWPASS FILTER
FILTER LENGTH = N
BAND EDGE IN HERTZ = FP, FOR SAMPLING RATE = 1
WINDOW TYPE: TP = O.RECTANGULAR, l.BARTLETT,

Z.HANNING, 3.HAMMING, 4.BLACKMAN, 5.KAISER
KAISER WINDOW PARAMETER = BETA
FREQUENCY RESPONSE CALCULATED AT K POINTS

C.S. BURRUS, JAN 1987

INTEGER TP
REAL X(101), B(1001)

C--------------------INpUT SPECIFICATIONS----------------- -
WRITE (6.100)

5 WRITE i6;lloi
READ (5,*) N, FP, TP, K
M = (N+1) /2

C--------------------DESIGN------------------------------
CALL LS (X,N,FP)
CALL WIND (X, N, TP)

C--------------------OUTpuT------------------------------
WRITE (6,120) (X(J), J=l,M)
CALL FREQ (X, B,N,K)
OPEN (1,FILE = ' f m t)
REWIND (1)
DO 50 J = 1, K+1

F = O.5*(J-1) /K
WRITE (1.130) F. ABS(B(J)) . , ~

50 CONTINUE
100 FORMAT ('LEAST SQUARE DESIGN WITH WINDOWS')
110 FORMAT ('ENTER: N, FP, TP, Kt)
120 FORMAT (9F8.5)
130 FORMAT (5X,F15.8,E15.8)

GOT0 5
END

C---------------END OF MAIN PROGRAM--------------------
C

SUBROUTINE LS (X,N,FP)
REAL X(1)

C
P = 3.141592654
M = (N+1)/2
AM = (N+1.0)/2.0
N2 = N/2
IF (M.EQ.AM) X(M) = 2.0*FP
DO 10 J = 1, N2

Q = P*(J - AM)
X(J) = (SIN(FP*2*Q)) /Q

10 CONTINUE
RETURN
END

C------------------WINDOWS-----------------------
SUBROUTINE WIND (X,N, TP)
INTEGER TP
REAL X(1)

C
IF (TP.EQ.0) RETURN

Q = 3.141592654/AM
Q1 = 3.141592654/ (AM-I)
GOT0 (1,2,3,4,5), TP
RETURN

1 DO 11 J = 1, AM
WT = J/AM
X(J) = WT*X(J)

11 CONTINUE
RETURN

C-----------------HmNING------------------------
2 DO 12 J = 1, AM

WT = 0.5 - 0.5*COS(J*Q)
X(J) = WT*X(J)

12 CONTINUE
RETURN

C-----------------HAMMING------------------------
3 DO 13 J = 1, AM

WT = 0.54 - 0.46*COS ((J-1) *Q1)
X(J) = WT*X(J)

13 CONTINUE
RETURN

C-----------------BLACm------------------------
4 DO 14 J = 1, AM

WT = 0.42 - 0.5*COS (J*Q) + 0.08*COS (2*J*Q)
X(J) = WT*X(J)

14 CONTINUE
RETURN

C-----------------KAISER------------------------
5 PRINT *, ' ENTER BETA'

READ *,BET
FIOl = FIO(BET)
DO 15 J = 1, AM

ARG = BET*SQRT (1- ((AM-J) / (AM-1)) **2)
WT = FIO (ARG) /FIOl
X(J) = WT*X(J)

15 CONTINUE
RETURN
END

FUNCTION--------------------
FUNCTION FIO(Z)
Y = z/2.0
E = 1.0

CONTINUE
PRINT *,'I0 FAILED TO CONVERGE'
FIO = E . - -
RETURN - -

END

286 Appendix

C--

SUBROUTINE FREQ (X, A, N, K)
REAL X(1), A(1) -

AT = 0
IF (AM.EQ.M) AT = 0.5*X(M)
DO 10 I = 1, N2

AT = AT + X(1) *COS (Q* (AM-I) * (J-1))
10 CONTINUE

A(J) = 2*AT
20 CONTINUE

RETURN
END

5. A FORTRAN PROGRAM FOR LINEAR-PHASE
FIR DIFFERENTIATOR DESIGN
USING A LEAST SQUARED ERROR CRITERION

The FORTRAN program is a system for designing a length-N, linear-phase,
FIR digital differentiator with a frequency response that is an LS error
approximation to an ideal differentiator frequency response. Filters designed
with this error criterion exhibit a ripple or oscillation in their frequency
response, called the Gibb phenomenon, where a discontinuity exists. This
phenomenon occurs for type 3 filters with an odd N but not for type 4 filters with
an even N. After the filter is designed, its frequency response is calculated for
analysis. The basic theory, formulas, variable names, and references are chosen
to follow the development in Sections 3.2.1 and 3.2.2.

The main program starts with a section that takes input specifications from
the terminal. The length of the desired FIR filter is entered as N. A value for K is
entered to set the number of frequencies at which the frequency response is
evaluated in the analysis section of the program.

The program determines if N is odd or even and branches,to the appropriate
section for design of a type 3 or type 4 filter. If N is odd, the ideal impulse
response is calculated from (3.30); if it is even, (3.31) is used. The first half of the
odd-symmetric impulse response is written to the terminal as the coefficients of
the designed filter. The frequency response of the filter is calculated at K equally
spaced frequencies by the subroutine FREQ(), which implements (2.28) and j
(2.29) or (3.13); these values are written to the file fm. !

This program gives an optimal least mean squared error approximation to f
the ideal differentiator. It is fast and accurate, even for large N, because the
design is analytical rather than numerical. If a wide-band differentiator is

5. A Fortran Program for Linear-Phase FIR Differentiator Design 287

the type 3 differentiator is significant near w = n because of the discontinuity
that must occur there (see Figs. 2.4 and 3.15).

If a narrow-band differentiator is desired, a new design formula should be
derived that combines a differentiator and a filter. If possible, a transition region
should be included to reduce the Gibbs effect.

C LEAST SQUARE ERROR FOR FIR DIFFERENTIATOR
C DESIGN PROGRAM FOR A LINEAR PHASE DIFFERENTIATOR
C FILTER LENGTH = N
C TYPE = TP: 3. ODD N, 4. EVEN N
C FREQUENCY RESPONSE CALCULATED AT K POINTS
C C.S. BURRUS, JAN 1987
c---

REAL X(1001), B (1001)
" L-------------------- INPUT SPECIFICATIONS-----------------

WRITE (6,100)
5 WRITE (6,110)

READ (5, *) N, K
M = (N+1) /2
AM = (N+1.0)/2.0
N2 = N/2
P = 3.141592654
IF (M.NE.AM) GOT0 11

C-------------TYpE 3 ODD N------------------------
DO 10 J = 1, M-1

X(J) = (COS(P*(M-J)))/(M-J)
10 CONTINUE

X(M) = 0.0
GOT0 12

C-------------TYpE 4 EVEN N-----------------------
11 DO 12 J = 1, N2

Q = P*(J - AM)
X(J) = (SIN(Q)) / (Q* (J-AM))

12 CONTINUE
r--------------------~u~pu~------------------------------

WRITE (6,120) (X(J),J=l,M)
CALL FREQ(X,B,N,K)
OPEN (1,FILE ='fm1)
REWIND (1)
DO 50 J = 1, K+1

F = 0.5*(J-1)/K
WRITE (1,130) F, ABS(B(J))

50 CONTINUE
100 FORMAT ('LEAST SQUARE DESIGN OF A DIFFERENTIATOR')
110 FORMAT ('ENTER: N, Kt)
120 FORMAT (9F8.5)
130 FORMAT (5X,F15.8,E15.8)

GOT0 5
END

c--
SUBROUTINE FREQ (X, A, N, K)
REAL X(l), A(1)

"

--- .

DO 10 I = 1, N2
AT = AT + X(I)*SIN(Q*(AM-I)*(J-I))

10 CONTINUE
A(J) = 2*AT

20 CONTINUE
RETURN
END

288 Appendix

6. A FORTRAN PROGRAM FOR MULTIBAND
LINEAR-PHASE FIR DESIGN USING
THE CHEBYSHEV ERROR CRITERION AND THE
PARKS-McCLELLAN ALGORITHM

A listing of a slightly modified version of the program EQFIR, which appeared
in the IEEE Press book Programs for Digital Signal Processing is included here
with the permission of the IEEE. It is called the Parks-McClellan algorithm.
Some modifications have been made in the input and output parts of the
program so that the input is read from the terminal and the output is stored in a
file, PM.LST, and written to the screen.

This program implements the theory described in Section 3.3. The main
program starts with a section that takes input from the terminal. The prompts
that appear on the screen are listed and described.

Enter filter length, type, no. of bands

The filter length is read in as "nfilt". The three possible filter types (see the
following discussion) are

Type 1 Multiple pass-bandlstop-band filter
Type 2 Differentiator
Type 3 Hilbert transform filter

The number of bands is two for a low-pass filter since the transition band
is not counted. For a bandpass filter with one pass band, the number of
bands is three: a stop band, the pass band, and the second stop band.

Enter band edges

The band edges should be entered in fractions of the sampling frequency in
ascending order. A low-pass filter has four bandedges: 0.0, the end of the
pass band, the beginning of the stop band, and 0.5. Bandpass filters have
correspondingly more band edges.

Enter desired value in each band

For a low-pass filter the desired value is 1.0 in the first band and 0.0 in the
second band.

Enter weight in each band

When the weights are equal to 1.0 in all bands, the error will be the same
for all bands. Since the program minimizes the weighted error, a larger
weight gives a smaller error. For example, if the pass-band weight is 1.0
and the stop-band weight is 10.0, the stop-band error will be one tenth as
large as the pass-band error.

6. A Fortran Program for Multiband Linear-Phase FIR Design 289

The filter type in the program (JTYPE) has a different meaning than that used
for the word "type" in Section 2.2.1. When JTYPE = 1, the parameter 171 = 0 in
(3.43). If JTYPE = 1 and the filter length is odd, the program designs a type 1
filter described in Section 2.2.1. When JTYPE = 2 and the filter length is even, a
type 2 filter is designed. If JTYPE = 3, the parameter m = 1 in (3.43), and the
program designs a type 3 filter for odd length or a type 4 filter for even length.
For JTYPE = 1 and JTYPE = 3, the desired function is a constant in the
specified bands. The choice JTYPE = 2 was included for the design of
differentiators where the desired function is linear with a specified slope. When
JTYPE = 1 or JTYPE = 3, the weight is a constant in the specified bands.
However, when JTYPE = 2, the weight is inversely proportional to the value of
the desired function, to give a constant percent error.

After the filter for Example 3.9 was designed, the following information
appeared on the screen:

finite impulse response (fir)
linear phase digital filter design

remes exchange algorithm
bandpass filter

filter length =21

band 1 band 2
lower band edge 0. 0.3700000

upper band edge 0.3300000 0.5000000

desired value 1.0000000 0.

weighting 1.0000000 1.0000000

deviation 0.0988697 0.0988697

deviation in db 0.81 89238 - 20.0987320
. ...

""'filter specs are in the file pm.lst***** *..... ~mpulse response is in file r.datW"'

In applications, such as equalization, when the desired function is not
constant or linear and the desired weight is not constant or proportional to the
desired value, the user can write new functions EFF for the desired function and
WATE for the special weighting function.

The examples in Section 3.3.3 were designed with this program. Each
example illustrates a particular feature in the design of filters using this program.
Before using this program, read the guidelines in Section 3.3.3.

It is always a good idea to calculate and plot the frequency response of a filter
before using it in an application. The filter is optimum in terms of the
mathematical criteria used in the theory of Chebyshev approximation, but it
may have exactly the expected frequency response.

Usually the program will be run several times to get an appropriate filter. The
formulas for filter length, given in Section 3.3.4, are only approximate starting

290 Appendix

points. Often the length must be changed and the program run again to meet
specifications. The choice of weight function is often an iterative procedure as
well. As described in Section 3.3.1, the maximum value of the product of the
weight W (f) and the error is minimized. A small weight allows larger errors,
whereas a large weight allows smaller errors.

A convenient way to use the program is to make up an input file and, in
UNIX, redirect the input. The input file for Example 3.9 was

The resulting output file, pm.lst, is

finite impulse response (fir)
linear phase digital filter design

remez exchange algorithm
bandpass filter

filter length = 21

***.*. ~mpulse response""'
h(1)= 0.18255439e-01 =h(21)
h(2) = 0.55136755e-01 =h(20)
h(3)=-0.40910728e-01 =h(19)
h(4)= 0.14930855e-01=h(18)
h(5) = 0.27568584e-01 = h(17)
h(6) = -0.59407797e-01 = h (l 6)
h(7)= 0.44841841e-01=h(15)
h(8) = 0.31 902660e-01 =h(14)
h(9)= -0.14972545e+OO=h(13)
h(10) = 0.25687239e+OO= h(12)
h (l l) = 0.69994062e+OO=h(ll)

lower band edge
upper band edge
desired value
weighting
deviation
deviation in db

band 1
0.
0.3300000
1.0000000
1.0000000
0.0988697
0.81 89238

band 2
0.3700000
0.5000000
0.
1.0000000
0.0988697

- 20.0987320

c main program: fir linear phase filter design program
C
c authors: james h. mcclellan
c schlumber well services
c 12125 technology blvd.
c austin, texas 78759
C
c thomas w. parks
c school of electrical engineering
c cornell university
c ithaca, new york 14853
C
c lawrence r. rabiner
c bell laboratories
c murray hill, new jersey 07974
C
c modified for terminal input by t.w. parks
C

c input:
c nfilt-- filter length
c jtype-- type of filter
c 1 = multiple passband/stopband filter
c 2 = differentiator
c 3 = hilbert transform filter
c nbands-- number of bands
C
c edge(2*nbands)-- array: lower and upper edges for each band
c with a maximum of 10 bands.
C
c fx(nbands)-- desired function array (or desired slope if a
c differentiator) for each band.
C
c wtx(nbands)-- weight function array in each band. for a
c differentiator, the weight function is inversely
c proportional to f.
C
c sample input data setup:

10.0,1.0,10.0
this data specifies a length 32 bandpass filter with
stopbands 0 to 0.1 and 0.425 to 0.5, and passband from
0.2 to 0.35 with weighting of 10 in the stopbands and 1
in the passband.

the following input data specifies a length 32 fullband
differentiator with slope 1 and weighting of l/f.

32,2,1
0,0.5
1.0
1.0

c---

C
common pi2, ad,dev, x, y, grid,des, wt, alpha, iext,nfcns, ngrid
common /oops/niter,iout
dimension iext (66) ,ad(66) ,alpha(66) ,x(66) ,y(66)
dimension h(66),hh(132)
dimension des (1045) ,grid(1045) ,wt (1045)
dimension edge(20) ,fx(10) ,wtx(lO),deviat (10)
double precision pi2,pi
double precision ad, dev, x, y
double precision gee,d
integer bdl, bd2, bd3, bd4
data bdl,bd2,bd3,bd4/lhb, lha, lhn, lhd/
input= 5

iout= 3
pi=4 .O*datan(l.OdO)
pi2=2.0dOO*pi

C
c the program is set up for a maximum length of 128, but
c this upper limit can be changed by redimensioning the
c arrays iext, ad, alpha, x, y, h to be nfmax/2 + 2.
c the arrays des, grid, and wt must dimensioned
c 16 (nfmax/2 + 2) .
C

nfmax=128
100 continue

open (3 , file ='pm.lst')
open(4,file ='r.dat')
jtype=O

C
c program input section
C

write(*,104)
104 format(3xr1Enter filter length, cype, no. of bands')

read *, nf ilt, jtype, nbands
if (nfilt.eq.0)stop
if(nfilt.le.nfmax.or.nfilt.ge.3) go to 115
call error
stop

115 if (nbands .le. 0) nbands=l

C
c grid density is assumed to be 16

C
lgrid=16
jb=2 *nbands
write (* , 120)

120 format (3x,'Enter band edges')
read *, (edge(j), j-1, jb)
write(*, 121)

121 format(3x,'Enter desired value in each band')
read *, (fx(i),i=l,nbands)
write (* , 122) - -

122 format (3x,'Enter weight in each band')
read *. (wtx(j) , j=l,nbands)
if (jtype.gt .O .and. jt~pe.le.3) go to 125
call error
stop

125 neg=l
if (jtype.eq.1) neg=O
nodd=nfilt/2
noddznfilt-2*nodd
nfcns=nfilt/2
if(nodd.eq.l.and.neg.eq.0) nfcns-nfcns+l

C
c set up the dense grid. the number of points in the grid
c is (filter length + 1) *grid density/2
C

grid(l)=edge (1)
delf=lgrid*nfcns
delf=O. 5/delf
if (neg.eq.O) go to 135
if (edge(1) .lt.delf) grid(l)=delf

135 continue
j-1
1=1
lband=l

14 0 f up=edge (l+l)
145 temp=grid(j)

C
c calculate the desired magnitude response and the weight
c function on the grid
C

des (j) =ef f (temp, fx, wtx, lband, jtype)

wt (j) =wate (temp, fx, wtx, lband, jtype)
j= j+l
grid (j) =temp+delf
if (grid(j) .gt .£up) go to 150
go to 145

150 grid(j-l)=fup
des (j-1) =eff (fup, fx, wtx, lband, jtype)
wt (j-1) =wate (fup, fx, wtx, lband, jtype)
lband=lband+l
1=1+2
if(lband.gt.nbands) go to 160
grid (j) =edge (1)
go to 140

160 ngrid=j-1
if (neg.ne .nodd) go to 165
if (grid (ngrid) .gt . (0.5-delf)) ngrid=ngrid-1

165 continue

C
c set up a new approximation problem which is equivalent
c to the original problem

C
if (neg) 170,170,180

170 if (nodd.eq.1) go to 200
do 175 j=l,ngrid
change=dcos (pi*grid (j))
des (j) =des (j) /change

175 wt (j) =wt (j) *change
go to 200-

180 if (nodd.eq.1) go to 190
do 185 j=l, ngrid
change=dsin(pi*grid(j))
des (j) =des (j) /change

185 wt (j)=wt (j) *change
qo to 200

190 do 195 j=l,ngrid
change=dsin (pi2*grid (j))
des (j) =des (j) /change

195 wt(j)=wt(j)*change
C
c initial guess for the extremal frequencies--equally
c spaced along the grid

xt=j-1
210 iext(j)=xt*temp+l.O

iext (nf cns+l) =ngrid

C
c call the remes exchange algorithm to do the approximation
c problem
C

call remes
C
c calculate the impulse response.
C

if (neg) 300,300,320
300 if (nodd.eq.O) go to 310

do 305 j=l,nml
nzmj=nz- j

305 h(j)=O.S*alpha(nzmj)
h (nfcns)=alpha (1)

h(nfcns)=0.5*a1pha(l)tOO25*alpha(2)
go to 350

320 if (nodd.eq.O) go to 330
h(l)=0.25*alpha(nfcns)
h(2)=0.25*alpha (nml)
do 325 j=3,nml
nzmj=nz- j
nf3j=nfcns+3-j

325 h(j)=0.25* (alpha (nzmj)-alpha (nf3j))
h(nfcns)=0.5*alpha(l) -0.25*alpha (3)
h (nz) =O. 0
go to 350

330 h(l)=0.25*alpha(nfcns)
do 335 j=Z,nml
nzmj=nz- j
nfZj=nfcns+Z-j

335 h(j)=0.25*(alpha(nzmj)-alpha(nf2j))
h (nfcns)=0.5*alpha(l) -0.25*alpha (2)

C

c program output sect ion.
L

c since iout=3, the output is written to file 'pm.lstf
350 write (iout, 360)
360 format (lhl, 70 (lh*) /15x,29hfinite impulse response (fir) /

113x,34hlinear phase digital filter design/
217x,24hremes exchange algorithm)
if(jtype.eq. 1) write(iout, 365)

365 format (22x, 15hbandpass filter/)
if (jtype.eq.2) write (iout, 370)

370 format (22x, 14hdifferentiator/)
if(jtype.eq.3) write(iout,375)

375 format (20x, 19hhilbert transformer/)
write (iout, 378) nfilt

378 format (20x,l6hfilter length = ,i3/)
c for screen output, the impulse response is notwritten

if (iout .eq. 6) go to 457
write(iout,380)

380 format(lSx,28h***** impulse response *****)
do 381 j=l,nfcns
k=nfiltjl-j
if (neg.eq.O) write(iout,382) j,h(j) ,k
if (neg.eq. 1) write (iout, 383) j, h (j) , k

381 continue
382 format (l3x,2hh (, i2,4h) = ,e15.8,5h = h (, i3,lh))
383 fomat(l3x,Zhh(,i2,4h) = ,e15.8,6h = -h(,i3, lh))

if (neg.eq. 1. and.nodd.eq. 1) write (iout, 384) nz
384 format (13x,Zhh(,i2,8h) = 0.0)

C

c now to write impulse response to file 'r.datl
c write the first half of the response

do 785 i=l,nfcns
hh(i)=h(i)

785 continue
C

if (neg.eq.O .and.nodd.eq.O) then
c here neg=O and nodd=O for bandpass even length filter
c nfcns=nfilt/2

do 786 n=l,nfcns
hh (nfcns+n) =h (nfcns-n+l)

786 continue
do 787 i-l,nfcns*2
write (4,*) hh(i)

787 continue
C

else if (neg.eq.O .and.nodd.eq. 1) then
c here neg=0 and nodd=l for bandpass odd length filter
c nfcns=nfilt/2 + 1

do 788 n=l,nfcns-1
hh (nf cns+n) =h (nfcns-n)

788 continue
do 789 i=l,nfcns*2-I
write (4, *) hh (i)

7 8 9 continue

C

else if(neg.eq.l.and.nodd.eq.0) then
c neg=l for diff and hilbert, nodd=O for even length

do 800 n=l,nfcns
hh (nf cns+n) =-h (nf cns-n+l)

800 continue
do 801 i=l,nfcns*2
write(4, *) hh(i)

801 continue

C
else if(neg.eq.l.and.nodd.eq.1) then

c neg=l for diff and hilbert, nodd=l for odd length
h (nf cns+l) =0

do 802 n=l,nfcns
hh (nfcns+n+l) =-h (nfcns-n+l)

802 continue
do 803 i=l,nfcns*2+1
write (4, *) hh (i)

803 continue
end if

457 do 450 k=l,nbands,4
kup=k+3
if(kup.gt.nbands) kup=nbands
write (iout, 385) (bdltbd2,bd3,bd4, j, j=k,kup)

385 format (24x, 4 (4a1, i3,7x)
write (iout, 390) (edge (2*j-l) , j=k,kup)

390 format(2x,l5hlower band edge,5f14.7)
write(iout, 395) (edge (2*j), j=k, kup)

395 format (2x,l5hupper band edge,5f14.7)
if (jtype.ne.2) write(iout,400) (fx(j), j=k,kup)

400 format(2x,l3hdesired value,2x,5f14.7)
if (jtype.eq.2) write (iout, 405) (fx(j), j=k, kup)

405 format (2x, 13hdesired slope,2x, 5f14.7)
write (iout, 410) (wtx(j) , j=k, kup)

410 format (2x, ghweighting, 6x,5£14.7)
do 420 j=k,kup

420 deviat (j) =dev/wtx(j)
write(iout, 425) (deviat (j) , j=k, kup)

425 format (2x, ghdeviation, 6x, 5f 14.7)
if(jtype.ne.1) go to 450
do 430 j=k,kup

430 deviat (j)=20 .O*aloglO (deviat (j) +fx(j))
write (iout, 435) (deviat (j) , j=k, kup)

435 format(2~,15hdeviation in db,5f14.7)
450 continue

do 452 j=l,nz
ix=iext (j)

452 grid (j) =grid (ix)

c extremal frequencies not written out in this version
c write(iout, 455) (grid(j), j=l,nz)

455 format(/2~,47hextremal frequencies--maxima of the error curve/
1 (2x,5£12.7))

c write (iout, 460)
460 format (lx,70 (lh*) /)

if (iout.eq.6) go to 461
iout=6
go to 350

461 write(*,460)
write(*, 462)

462 format(lOx,45h*****filter specs are in the file pm.lst*****/)
458 write (*, 459)
459 format(lOx,45h******impulse response is in file r.dat******/)

stop
end

C---

c f u n c t i o n : e f f
c f u n c t i o n t o c a l c u l a t e t h e d e s i r e d magnitude response
c a s a f u n c t i o n of f requency.
c an a r b i t r a r y f u n c t i o n of f requency can be
c approximated i f t h e u s e r r e p l a c e s t h i s f u n c t i o n
c wi th t h e a p p r o p r i a t e code t o e v a l u a t e t h e i d e a l
c magnitude. n o t e t h a t t h e parameter f r e q i s t h e
c va lue of normal ized f requency needed f o r e v a l u a t i o n .
C---

C
f u n c t i o n e f f (f r e q , f x , wtx, lband, j t ype)
dimension f x (5) , w t x (5)
i f (j t y p e . e q . 2) go t o 1
e f f =f x (lband)
r e t u r n

1 e f f = f x (lband) *f r e q
r e t u r n
end

C

C---

c f u n c t i o n : wate
c f u n c t i o n t o c a l c u l a t e t h e weight f u n c t i o n a s a f u n c t i o n
c of f r equency . s i m i l a r t o t h e f u n c t i o n e f f , t h i s f u n c t i o n can
c be r e p l a c e d by a u s e r - w r i t t e n r o u t i n e t o c a l c u l a t e any
c d e s i r e d weight ing f u n c t i o n .
C--- -=-

C

f u n c t i o n wate (f r e q , fx , wtx, lband, j t ype)
dimension f x (5) , w tx (5)
i f (j t y p e . e q . 2) go t o 1
wate=wtx (lband)
r e t u r n

1 i f (fx (1band) . l t . 0 . 0 0 0 1) go t o 2
wate=wtx (lband) / f r e q
r e t u r n

2 wate=wtx (lband)
r e t u r n
end

C

C---

c subrou t ine : e r r o r
c t h i s r o u t i n e w r i t e s an e r r o r message i f an
c e r r o r h a s been d e t e c t e d i n t h e inpu t d a t a .

C

s u b r o u t i n e e r r o r
common / o o p s / n i t e r , i o u t
w r i t e (i o u t , 1)

1 format(44h ************ e r r o r i n i n p u t d a t a * * * * * * * * * *)
r e t u r n
end

C

C---

c subrou t ine : remes
c t h i s s u b r o u t i n e implements t h e remes exchange a l g o r i t h m
c f o r t h e weighted chebyshev approximation of a cont inuous
c f u n c t i o n wi th a sum of c o s i n e s . i n p u t s t o t h e subrou t ine
c a r e a dense g r i d which r e p l a c e s t h e f requency a x i s , t h e
c d e s i r e d f u n c t i o n on t h i s g r i d , t h e weight f u n c t i o n on t h e
c g r i d , t h e number of cos ines , and an i n i t i a l guess of t h e
c ext remal f r equenc ie s . t h e program minimizes t h e chebyshev
c e r r o r by determining t h e b e s t l o c a t i o n of t h e ex t r ema l
c f r e q u e n c i e s (p o i n t s of maximum e r r o r) and then c a l c u l a t e s
c t h e c o e f f i c i e n t s of t h e b e s t approximat ion.
c---
C

s u b r o u t i n e remes
common p i2 , ad,dev, x, y , g r i d , des , w t , a lpha , i e x t , n fcns , n g r i d

common /oops/niter, iout
dimension iext(66) ,ad(66),alpha(66),~(66),~(66)
dimension des(1045) ,grid(1045) ,wt (1045)
dimension a(66) ,p(65) ,q(65)
double precision pi2, dnum, dden, dtemp, a,p, q
double precision dk,dak
double precision ad, dev, x, Y
double precision gee,d

C
c the program allows a maximum number of iterations of 25
C

itrmax=25
devl=-1 .O
nz=nfcns+l
nzz=nfcns+2
niter=O

100 continue
iext (nzz) =ngrid+l
niter=niter+l
if (niter.gt .itrmax) go to 400
do 110 j=l,nz
jxt=iext (j)
dtemp=grid(jxt)
dtemp=dcos (dtemp*pi2)

110 x(j)=dtemp
jet=(nfcns-1) /15+1
do 120 j=l,nz

120 ad(j)=d(j,nz, jet)
dnum=O . 0
dden=O .0
k=l
do 130 j=l,nz
l=iext (j)
dtemp=ad(j) *des (1)
dnum=dnum+dtemp
dtemp=float (k) *ad(j) /wt (1)
dden=dden+dtemp

130 k=-k
dev=dnum/dden

c write (iout, 131) dev
c intermeditate deviations not written in this version
131 format (lx, 12hdeviation = , f 12.9)

nu=l
if (dev.gt.0.0) nu=-1
dev=-f loat (nu) *dev
k=nu
do 140 j=l,nz
l=iext (j)
dtemp=float (k) *dev/wt (1)
y (j)=des (1) +dtemp

140 k=-k
if(dev.gt.dev1) go to 150
call ouch
go to 400

150 devl=dev
jchnge=O
kl=iext (1)
knz=iext (nz)
klow=O
nut=-nu
j=1

C

c search for the extremal frequencies of the best
c approximation

nut=-nut
if (j .eq.2) yl=comp
comp=dev
if (l.ge. kup) go to 220
err=gee (1,nz)
err= (err-des (1)) *wt (1)
dtemp=float(nut)*err-comp
if(dtemp.le.0.0) go to 220
comp=float (nut) *err

210 1=1+1
if (1.ge.kup) go to 215
err=gee (1,nz)
err= (err-des (1) *wt (1)
dtemp-f loat (nut) *err-comp
if (dtemp.le. 0.0) go to 215
comp=float (nut) *err
go to 210

215 iext (j)=l-1
j=j+l
klow=l-1
jchnge=jchnge+l
go to 200

220 1=1-1
225 1=1-1

if (1.le.klow) go to 250
err=gee (1,nz)
err= (err-des (1)) *wt (1)
dtemp=f loat (nut) *err-comp
if(dtemp.gt.0.0) go to 230
if (jchnge.le.0) go to 225
go to 260

230 comp-f loat (nut) *err
235 1=1-1

if (1.le.klow) go to 240
arr=gee (1,nz)
err=(err-des (1)) *wt (1)
dtemp=float (nut) *err-comp
if(dtemp.le.0.0) go to 240
comp=f loat (nut) *err
go to 235

240 klow=iext (j)
iext (j) =l+l
j= j+l
jchnge=jchnge+l
go to 200

250 l=iext (j) +l

err=gee (1,nz)
err= (err-des (1)) *wt (1)
dtemp-f loat (nut) *err-comp
if(dtemp.le.0.0) go to 255
comp=f loat (nut) *err

j=j+l
go to 200

300 if (j.gt.nzz) go to 320
if(kl.gt.iext(1)) kl=iext(l)
if (knz. lt . iext (nz)) knz=iext (nz)

err=gee (1,nz)
err=(err-des (1)) *wt (1)
dtemp=f loat (nut) *err-comp
if (dtemp.le.0.0) go to 310
comp=f loat (nut) *err
j=nzz
go to 210

315 luck=6
go to 325

320 if (1uck.gt . 9) go to 350
if (comp.gt. yl) yl=comp
kl=iext (nzz)

325 l=ngrid+l
klow=knz
nut=-nut1
comp=yl* (1.00001)

330 1=1-1
if(l.le.klow) go to 340
err=gee (1, nz)
err=(err-des (1)) *wt (1)
dtemp=f loat (nut) *err-comp
if (dtemp.le.0.0) go to 330
j=nzz
comp=f loat (nut) *err
luck=luck+lO
go to 235

340 if (luck.eq.6) go to 370
do 345 j=l, nfcns
nzzmj=nzz-j
nzmj=nz- j

345 iext (nzzmj) =iext (nzmj)
iext (1) =kl
go to 100

350 kn=iext (nzz)
do 360 j=l,nfcns

360 iext (j)=iext (j+l)
iext (nz) =kn
go to 100

370 if (jchnge.gt.0) go to 100
C
c calculation of the coefficients of the best approximation
c using the inverse discrete fourier transform
C

400 continue
nml=nfcns-1
fsh=l.Oe-06
gtemp=grid (1)
x (nzz) =-2.0
cn=2 *nf cns-1
delf=l.O/cn
1=1
kkk=O
if (grid(1) .lt.O.Ol.and.grid(ngrid) .gt.0.49) kkk=l
if (nf cns . le .3) kkk=l
if (kkk.eq.1) go to 405
dtemp=dcos (pi2*grid (1))
dnum=dcos (pi2*grid (ngrid))
aa=2. O/ (dtemp-dnum)
bb=- (dtemp+dnum) / (dtemp-dnum)

405 continue
do 430 j=l,nfcns
ft=j-1
ft=ft*delf
xt=dcos (pi2 *ft)
if (kkk.eq.1) go to 410
xt= (xt-bb) /aa
xt1=sqrt (1.0-xt*xt)
ft=atan2 (xt1,xt) /pi2

410 xe=x(l)

if (xt .gt.xe) go to 420
if ((xe-xt) . lt .fsh) go to 415
1=1+1
go to 410

415 a(j)=y(l)
go-to- 425

420 if ((xt-xe) .lt .fsh) go to 415
grid (1) =ft
a(j)=gee(l,nz)

425 continue
if (1.gt. 1) l=l-1

430 continue
grid (1) =gternp
dden=pi2/cn
do 510 j=l,nfcns
dternp=O . 0
dnurn= j - 1
dnurn=dnurn*dden
if(nrnl.lt.1) go to 505
do 500 k=l,nrnl
dak=a (k+l)
dk=k

5 0 0 dternp=dtemp+dak*dcos (dnum*dk)
505 dternp=2.O*dtemp+a(l)
510 alpha(j)=dtemp

do 550 j=2, nfcns
550 alpha(j)=2.0*alpha(j)/cn

alpha (1) =alpha (1) /cn
if (kkk.eq.1) go to 545
p (1) =2.0*alpha (nfcns) *bb+alpha (nml)
p (2) =2.0*aa*alpha (nfcns)
q(l) =alpha (nfcns-2) -alpha (nfcns)
do 540 j=2,nml
if (j .lt .nrnl) go to 515
aa=0 .5*aa
bb=0 .5*bb

515 continue
p(j+l)=O.O
do 520 k=l, j
a (k) =p (k)

520 p(k)=2.0*bb*a (k)
p(2)=p(2) +a (1) *2 .O*aa

jpl= j+l
do 530 k=3, jpl

530 p (k) =p (k) +aa*a (k-1)
if (j .eq.nml), go to 540
do 535 k=l,1

535 q(k)=-a (k)
nflj=nfcns-1-j
q(l)=q(l)+alpha(nflj)

540 continue
do 543 j=l,nfcns

543 alpha(j)=p(j)
545 continue

if (nfcns.gt .3) return
alpha (nfcns+l)=O .0
alpha (nf cns+2) =O. 0
return
end

C
c---

c function: d
c function to calculate the lagrange interpolation
c coefficients for use in the function gee.
c---

C

double precision function d(k,n,m)
common pi2, ad, dev, x, y, grid, des, wt, alpha, iext, nfcns, ngrid
dimension iext(66),ad(66),alpha(66),~(66),~(66)
dimension des(1045) ,grid(1045) ,wt (1045)
double precision ad, dev, x, y
double precision q
double precision pi2
d=1.0
q=x (k)
do 3 l=l,m
do 2 j=l,n,m
if (j-k) 1,2,1

1 d=2.0*d*(q-x(j))
2 continue
3 continue
d=l. O/d
return
end

C

c function: gee
c function to evaluate the frequency response using the
c lagrange interpolation formula in the barycentric form

C
double precision function gee(k,n)
common pi2, ad, dev, x, y, grid, des, wt, alpha, iext, nfcns,ngrid
dimension iext (66) ,ad(66) ,alpha(66) ,x(66) ,y(66)
dimension des(1045) ,grid(1045) ,wt (1045)
double precision p, c, d, xf
double precision pi2
double precision ad, dev, x, y
p=o .o
xf=grid (k)
xf=dcos (pi2*xf)
d=O .O
do 1 j=l,n
c=xf-x (j)
c=ad(j)/c
d=d+c

1 p=p+c*y(j)
gee=p/d
return
end

C
C---

c subroutine: ouch
c writes an error message when the algorithm fails to
c converge. there seem to be two conditions under which
c the algorithm fails to converge: (1) the initial
c guess for the extremal frequencies is so poor that
c the exchange iteration cannot get started, or
c (2) near the termination of a correct design,
c the deviation decreases due to rounding errors
c and the program stops. in this latter case the
c filter design is probably acceptable, but should
c be checked by computing a frequency response.

C---

C
subroutine ouch
common /oops/niter,iout
write (iout, 1) niter

1 format(44h * * * * * * * * * * * * failure to converge **********/
l4lhOorobable cause is machine roundina error/
223h0humber of iterations =, i4/
339hOif the number of iterations exceeds 3,/
450hOthe design may be correct, but should be verified)
return
end

302 Appendix

7-8 FORTRAN PROGRAMS FOR CHEBYSHEV AND LEAST
SQUARED COMPLEX APPROXIMATION, SPECIAI-IZED FOR
BANDPASS, DIFFERENTIATION, AND HILBERT
TRANSFORMATION FILTERS WITH REDUCED DELAY

Program 7 is intended to minimize the maximum magnitude of the complex
frequency response errors on a fine grid of frequencys for a length-N FIR filter
with real coefficients. In the past bands, the desired frequency response has a
constant magnitude for band pass and hilbert filters and a linear magnitude for
differentiators. The desired phase is linear with a slope determined from the
desired delay which is entered from the keyboard.

In Program 8 the sum of the squared magnitudes of complex frequency-
response errors on a fine grid of frequencies is minimized in this program for a
length-N FIR filter with real coefficients. In the pass band the desired function
has a constant magnitude and a linear phase with a slope determined by the
value of the desired delay, which is entered from the keyboard. Frequency bands
can be separated by transition transition regions, and different weights can be
used in various bands. The filter is not restricted to have exactly linear phase.
Rather, the desired group delay is specified so that filters may be designed with
less delay than the linear-phase filters.

The input for these programs is patterned after Program 6, the Parks-
McClellan program. The input and output for program 8 are listed below with
corresponding explanations: (They are similar for Program 7.)

Enter filter length, type, no. of bands

These entries are the same as for Program 6. The possible filter types are

Type 1 Multiple pass-bandlstop-band filter
Type 2 Differentiator
Type 3 Hilbert transform filter

Enter desired group delay

This parameter determines the slope of the desired phase function. The
delay is in normalized units. A desired delay of M corresponds to a delay
of M samples.

Enter band edges (normalized in Hz).

The band edges are entered in ascending order as in Program 6.

Enter desired value of function in each band.

The usual values are 1.0 in the pass band and 0.0 in the stop band.

7-8 Chebyshev and Least Squared Complex Approximation 303

Enter weights for each band.

Just as in Program 6, the weighted error is minimized. A larger weight gives
a smaller error.

To control group delay error, enter 1, else 0.

When a 1 is entered, the group delay error is reduced according to the
weight entered in response to the next request.

Enter weight for group delay.

A larger weight gives a smaller group delay.

To control phase error, enter 1, else 0.

Since the group delay is determined by the phase slope, this additional
weight is necessary if the phase error is important.

After the parameters are entered, the following outputs appear on the screen
for a reduced delay version of example 3.9:

design in progress
info= 0

~htte7mpulsvtcrspbMSe.CRtr..***.....*...* *"****.*.......**..........*.*...."**"........"
digital filter design

least square approximation
bandpass filter

filter length =21

band 1 band 2
lower band edge 0. 0.370000000
upper band edge 0.330000000 0.500000000
desired value 1.000000000 0.
weighting 1 .OOOOOOOOO 1 .OOOOOOOOO

band

..

desired group delay 8.000000000
weight of group delay 1.000000000
.........*.*...**..*.....****.**.....*..*****..*...*..........*.*....*..*......****.........

""'filter specs are in the file I.lst""*
"filter impulse response is in file r.dat"

Program 8 uses the approach described in Section 3.2. First, a set of linear
equations representing the desired filter characteristics is derived. These
equations are then "solved" in the LS by the standard LINPACK QR
decomposition subroutines DQRDC and DQRSL.

304 Appendix

The details of the design are written out to the file named l.lst, and the
impulse response alone is written to the file r.dat. Both the magnitude and delay
(or phase) of the resulting response should be checked to see if they meet
specifications, since this program minimizes the sum of the squared magnitudes
of the complex frequency response errors.

The input parameters shown were used to design a length-21 filter with the
same band edges as the linear-phase filter in Example 3.9, but with a desired
delay of 8 samples, rather than the 10-sample delay resulting with exactly linear
phase.

The output of the design program, found in the file l.lst is

finite impulse response (fir)
digital filter design

least square approximation
bandpass filter

filter length =21

.... impulse response""'
h(1) = -0.26436972e -01
h(2) = 0.11478931e-01
h(3) = 0.25567593e-01
h(4) = -0.57302951 e -01
h(5) = 0.45461 593e -01
h(6) = 0.29440641e-01
h(7) = -0.1 4849445e+00
h(8) = 0.25806873e + 00
h(9) = 0.69688821 e+00
h(10) = 0.25809250e + 00
h (l l) = -0.14683524e+OO
h(12) = 0.27705259e-01
h(13) = 0.45791 51 2e-01
h(14) = -0.555931 80e-01
h(15) = 0.22229100e-01
h(16) = 0.1 5402893e-01

7-8 Chebyshev and Least Squared Complex Approximation 305

band 1 band 2
lower band edge 0. 0.370000000

upper band edge 0.330000000 0.500000000

desired value 1.000000000 0.

weighting 1.000000000 1 .OOOOOOOOO
..

desired group delay 8,000000000
weight of group delay 1.000000000
*.***....*...*********........******..**.*****....*.*.*...........******......*********.......

Several modifications of these programs can be made. The input specification
section of the program can be bypassed, and an arbitrary complex-valued
desired frequency response can be used. This modification would be useful for
designing equalizer filters.

Program 7

This program is intended to minimize the maximum magnitude of the
complex frequency response errors on a fine grid of frequencies for a length-N
FIR filter with real coefficients. In the passbands, the desired frequency response
has a constant magnitude for bandpass and Hilbert filters and a linear
magnitude for differentiators. The desired phase is linear with a slope deter-
mined from the desired delay which is entered from the keyboard.
C PROGRAM FOR THE DESIGN OF FIR FILTERS I N THE COMPLEX DOMAIN

C

c a u t h o r s : X . Chen
c Department of Engineer ing
c U n i v e r s i t y of Denver
c Denver, CO 80208
C

c T. W . P a r k s
c School of E l e c t r i c a l Engineer ing
c C o r n e l l U n i v e r s i t y
c I t h a c a , NY 14853

c See t h e p a p e r "Design of FIR f i l t e r s i n t h e complex domain" by
c X . Chen and T. W . Parks , t o appear i n IEEE-ASSP.

s o l v e min W(f) l f (z) - h (0) - h (l) * (l / z) - h (2) * (l / z * * 2) -
where f (z (i)) = u (z (i)) t j v (z (i)) f o r i = 1 , 2 , ,m
and a l l t h e h (k) a r e r e a l

normal e q u a t i o n i s AH=B
A is s t o r e d a s A '

m d i s c r e t e p o i n t s of f r e q u e n c i e s f
p d i s c r e t e p o i n t s o f a u x i l i a r y v a r i a b l e t h e t a

t (j) = (j - l) / Z p
t h e t a (j) = p i z * t (j) j = l , . . . , p

n length of the filter
A= (a (s,k)) is m*p+l by n+3

a(s,k) - W(f (i)) cos(pi2 (k-l)f (i) - pi2 t(j))
where s=i+ (j-l)m

i=l,, m
j=l,, p
k=l, . . .,n

a(s,k) = 0 for k=n+l,n+Z,n+3
and for s=rnp+l

H= transpose of (h(l), h(2), , h(n))
B= transpose of (b (1) ,b (m) , 0)

b(s)=W(fi) * (u(i) *cos (theta (j)) - v(i) *sin(theta(j)))

Uses Algorithm 495 by I. Barrodale and C. Phillips
in ACM Trans. math. Software, v.1, pp.264-270,1975.

Additional columns may be added to control error(s) of phase
or/and group delay.

implicit real*8 (a-h, 0-2)
double precision a (67,8193) ,b(8193) ,h(67)
double precision grid(1024) ,des(1024) ,wt (1024) ,u(1024) ,v(l024)
double precision edge (20) ,fx(lO), wtx(10), wgd,deviat (10)
character*6 ffile
character*l iout, igd, iph

pi=3.141592653589793dO
pi2=pi*2 .dO
..
program input section
(64*16=1024, 64*16*8=8192)

continue
if ile=6
write (6, 90)
format('1f printer output desired on this terminal1,/,
'enter y else n. (If n entered, prompts will still I , / ,

'appear on this terminal) ')
read (5,96) iout
format (all
it (iout .eq. 'n') then

if ile=8
write (6,92)
format('Enter the desired file name (6 characters only) . I , /)

read (5,921) ffile
format (a6)
open (8, f ile=f file)
rewind 8
write (6,94) ffile
format ('Screen output now in file ',a6,/)
end if

write (6,104)
format('Type filter length, type, bands, grid density')
read(5,105) nfilt, jtype,nbands, lgrid
format (8il0)
if (nfilt .gt .nfmax.or.nfilt .lt .l) call error
if (nbands . le. 0) nbands=l
write (6,106)

format ('Type auxiliary grid density')
read(5,105) lp

main grid density is assumed to be 8 unless specified
otherwise

if (1grid.le.O) lgrid=8
auxilary grid density is assumed to be 8 unless specified
otherwise

if (lp.le.0) lp=8
write(6,lll)
format ('Type desired group delay')
read(5,llO) slop
slop=slop*piZ
jb=2 %bands
write (6,109)
format ('Type band edges. ')
read(5,llO) (edge(j), j=1, jb)
format (8fl0.0)
write(6,107)
format('Type desired value of function in each band.')
read(5,llO) (fx(j), j=l,nbands)
write (6,108)
format('Type weights for each band.')
read(5,llO) (wtx(j), j=l,nbands)
write(6,115)
format ('If error in group delay is desired to control', /,
'enter y else n.')
read (5,113) igd
format (al)
if (igd.eq.'nl) go to 122
write (6,124)
format ('Type weight for group delay. ' 1

read(5,llO) wgd
write(6,123)
format('1f error in phase is desired to control1,/,
'enter y else n. ')
read(5.113) iph
if (iph.eq.'nr) go to 120
write (6,117)
format ('Type weight for phase error')
read(5,llO) wph
if (jtype.eq.0) call error

set up the dense grid. the number of points in the grid
is (filter length t l)*grid density

grid(l)=edge (1)
delf=lgrid*nfilt
delf=O .5/delf
if(edge(1) .lt.delf) grid(l)=delf
continue
j=1
1=1
lband=l
f up=edge (1t1)
temp=grid (j)

calculate the desired frequency response and the weight
function on the grid

call eff (temp,slop,fx,wtx,lband, jtype,des(j) ,u(j) ,v(j))
wt (j) =wate (temp, fx, wtx, lband, jtype)
j=j+l
grid (j) =temp+delf
if (grid(j) .gt .fup) go to 150
go to 145

150 klk=j-1
grid(k1k) =£up
call eff (fup,slop, fx,wtx, lband, jtype,des(klk) ,u(klk) ,v(klk))
wt (j-l)=wate(fup, fx, wtx, lband, jtype)
lband=lband+l
1=1+2
if (1band.gt .ribands) go to 160
grid(j)=edge(l)
go to 140

160 ngrid=j-1
c if (grid(ngrid) .gt . (0.5-delf)) ngrid=ngrid-1
C ..

derive linear equations for the complex approximation
C

do 300 j=l,lp
theta=pi* (j-1) /dfloat (lp)
tc=dcos (theta)
ts=dsin(theta)
do 280 i=l,ngrid

mt=i+ (j-1) *ngrid
b(mt) = u(i) *tc-v(i)*ts
b(mt) = wt(i)*b(mt)
do 260 k=l,nfilt

temp=pi2* (k-1) *grid(i) -theta
a(k,mt)=wt (i) *dcos (temp)

continue

c o ~ t inue
continue

if(igd.eq.'nl) go to 320
...
adding constraints on the errors in group delay

delay=slop/pi2
do 310 i=l,ngrid

if (des (i) .lt.l.e-5) go to 310
ms=ms+l
b(ms) = O.dO
theta=-slop*grid(i)
if(jtype.eq.2) theta=theta+pi/Z.dO
if(jtype.eq.3) theta=theta-pi/2.dO
do 305 k=l,nfilt

temp=pi2* (k-1) *grid(i) +theta
a (k,ma)=wgd* (k-l.dO-delay) *dcos (temp)

continue
continue

adding constraints on the error in phase

theta=-pi/2.d0
do 330 i=l,ngrid

if (des (i) . lt. 1.e-5) go to 330
ms=ms+l
b(ms) = O.dO
do 325 k=l,nfilt

temp=pi2* (k-1) *grid(i) +theta
a(k,ms)=wph*dsin(temp)

continue
continue

if(ms.gt.8192) call error
ndim=67
mdim=8193
tol=l.d-15
relerr=O.dO

call cheb (ms,nfilt,mdim,ndim,a, b,tol, relerr, h,nrank, resmax, iter, ncode)
..
program output section.

write(ifile, 360)
format (70 (lh*) //25x, 'finite impulse response (fir) ' /
20x,'quasi-linear phase digital filter design1/
25x,'complex approximation'/
30x, 'algorithm 495'/)
if (jtype.eq. 1) write(ifile,365)
format (30x, 'bandpass filter1/)
if (jtype.eq.2) write(ifi1e. 370)
format (30x, 'differentiator'/)
if (jtype.eq.3) write(ifi1e. 375)
format (30x, 'hilbert transformer1/)

write (ifile, 378) nfilt
format(30x,'filter length = ',i3/)
write(ifile, 380)
format(22x,'***** impulse response * * * * * I)

do 381 j=l,nfilt
write (ifile, 382) j,h (j)
continue
format (20x, 'h(',i3, ') = ',e15.8)
do 450 k=l,nbands,4
kup=k+3
if(kup.gt.nbands) kup=nbands
write (ifile, 385) (j, j=k, kup)
format (/24x, 4 ('band', i3,8x))
write (ifile, 390) (edge (2* j-1) , j=k, kup)
format (2x, 'lower band edge', 5f15.9)
write(ifile, 395) (edge(Z*j), j=k, kup)
format (Zx, 'upper band edge1,5f15.9)
if (jtype.ne.2) write(ifile, 400) (fx(j), j=k,kup)
format (Zx, 'desired value', 2x, 5f15.9)
if (jtype.eq.2) write(ifile,405) (fx(j), j=k,kup)
format (Zx, 'desired magn. slope',2x,Sf15.9)
write(ifile, 410) (wtx(j) , j=k, kup)

format (Zx, 'weighting', 6x, 5f 15.9)
do 412 j-k,kup

deviat (j) =resmax/wtx (j)
if (fx(j) .gt.0.001 .and. jtype.eq.2) deviat(j)=deviat(j)/Z.

continue
write(ifile, 414) (deviat (j), j=k, kup)
format (Zx, 'deviation', 6x, 5f15.9)
do 416 j=k,kup

deviat (j) =20.dO*dloglO (deviat (j) +fx(j))
write (ifile, 418) (deviat (j) , j=k, kup)
format (2x, 'deviation in dB1,5f15.9)
write (ifile, 419)
if (igd.eq.'n1) go to 470
write (ifile, 408) wgd
format (2x. 'weight of group delay', f15.9)
devgd=resmax/wgd
write(ifile, 406) devgd
fonnat (2x. 'error of group delay', lx, fl5.9)
if (iph.eq.'nl) go to 480
write(ifi1e. 471) wph
format (2x. 'weight of phase error1,f15. 9)
devph=resmax/wph
write (ifile, 472) devph
format (2x, 'error of phase', 6x.fl5.9)
slop=slop/pi2
write(ifile, 407) slop
format (Zx, 'desired group delay', 2x, f15.9)
write(ifile, 419)
format (Zx, 66 (lh-))
write (if ile, 420) lgrid
format (2x. 'grid density', 2x. i7)
write(ifile,422) lp
format (2x, 'auxiliary grid', 2x. i6)
write (ifile, 425) iter
format (2x, 'iterations', 6x, i5)
write(ifi1e. 430) ncode
format (2x. 'exit code', 7x. i5)
continue

write (ifile, 460)
format (/ , 70 (lh*) /)

close (8)
stop
end
.

subroutine ef f (temp, slop, fx, wtx, lband, jtype, des, u, v)

function to calculate the desired frequency response
as a function of frequency.

implicit double precision (a-h, 0-2)
dimension fx(10) ,wtx(10)
if (jtype.eq.2) go to 2
if (jtype.eq.3) go to 3
t=-temp*slop
des=fx (lband)
u=des*dcos (t)
v=des*dsin (t)
return

t=temp*slop
des=fx(lband)*temp*2.dO*3.141592653589793dO
u=des*dsin (t)
v=des*dcos (t)
return

des=f x (lband)
if (des.1t.l.d-5) go to 4
t=-temp*slop
u=des*dsin (t)
v=-des*dcos (t)
return

u=O .dO
v=O .dO
return
end

function ~ a t e (temp, fx, wtx, lband, jtype)

function to calculate the weight function as a function
of frequency.

implicit double precision (a-h, 0-2)
dimension fx(5), wtx(5)
if (jtype.eq.2) go to 1
wate=wtx (lband)
return

if (fx(1band) .lt.0.0001) go to 2
wate=wtx (band) /temp
return

wate-wtx (lband)
return
end

subroutine error
write (ifile, 1)
format(' ************ error in input data * * * * * * * * * * ')
stop .
end

Program 8
c main program: fir least-square design program
C
c authors: x. chen and t-w. parks
c department of electrical and computer engineering
c rice university
c houston, texas 77251
C
c input:
c nfilt-- filter length
C
c jtype-- type of filter
c 1 - multiple passband/stopband filter
c 2 - differentiator
c 3 - Hilbert transform filter
C
c nbands-- number of bands
C
c lgrid-- grid density set to 8 unless otherwise specified
C
c edge(2fnbands)-- bandedge array, lower and uppef edges for
c each band with a maximui of 10 bands.
C
c fx(nbands)-- desired function array for each band.
C
c wtx(nbands)-- weight function array in each band.
C
c slope-- desired group delay
,- -
c wgd-- weight for group delay error
c

wph-- weight for phase error

sample data setup:
32,1,3
15.5
0.0,0.1,0.2,0.35,0.425,0.5
0.0,1.0,0.0
10.0,1.0,10.0

n
this data specifies a length 32 bandpass filter with
desired group delay of 15.5,
stopbands 0 to 0.1 and 0.425 to 0.5, and passband from
0.2 to 0.35 with a weight on the error magnitude-squared of 10
in the stopbands and 1 in the passband. the group delay is
weighted by 10.0 and the phase error is not directly controlled

-
implicit real*8 (a-h, 0-2)
double precision a(4200,64), b(4200) ,h(64)
double precision work(4200) ,qy(4200) ,qty (4200) ,ah(4200)
double precision qraux (64) ,eor (4200)
double precision grid(1025) ,des(1025) ,wt (1025) ,u(1025) ,~(1025)
double precision edge(20) ,fx(10) ,wtx(10)
lnteger jpvt (64)

c program input section

C

nfmax=64
100 continue

write (*, 104)
format (3x, 'Enter filter length, type, no. of bands')
read(*,*) nfilt, jtype,nbands
if(nfilt.gt.nfmax.or.nfilt.lt.3) call error

main grid density is assumed to be 16 unless specified
otherwise

write (* , 111)
format(3x,'Enter desired group delay')
read (* , *) slope
slope=slope*pi2
jb=Z*nbands
write(*, 109)
format (3xfEnter band edges (normalized in Hz.) . ')
read(*, *) (edqe(j) ,j=l, jb) . . . -

write (*, 107)
format(3x,'Enter desired value of function in each band.')
read(*,*) (fx(j), j=l,nbands)
write(*, 108)
format(3x,'Enter weights for each band.')
read(*,*) (wtx(j), j=l,nbands)
write (* , 115)
format(3x,'To control group delay error enter 1, else 0.')
read (*,*)igd
if (igd.eq.0) go to 122
write (*, 114)
format(3x,'Enter weight for group delay.')
read(*, *) wgd
write (* , 123)
format(3x,'To control phase error enter 1, else 0.')
read(*,*) iph
if (iph.eq.O) go to 120
write (*, 117)
format (3x, 'Enter weight for phase error')
read(*,*) wph
if (jtype.eq.0) call error
write (* , 121)
format (3x, 'design in progress')

set up the dense grid. the number of points in the grid
is filter length * grid density (lgrid)

grid (1) =edge (1)
delf=lgrid*nfilt
delf=0.5/delf
if (edge(1) .lt .delf) grid(l)=delf
continue
j=1
1=1
lband=l
fup=edge (l+l)
temp=grid(j)

calculate the desired frequency response and the weight
function on the grid

call eff (temp,slope,fx,wtx,lband, jtype,des (j) ,u(j) ,v(j))
wt (j) =wate(temp, fx, wtx, lband, jtype)
j=j+l
arid (i) =temu+delf

klk= j-1
grid(klk)=fup
call eff (fup,slope,fx,wtx,lband, jtype,des (klk) ,u(klk) ,v(klk))
wt (j-l)=wate (fup,fx,wtx,lband, jtype)
lband=lband+l
1=1+2
if(lband.gt.nbands) go to 160
grid(j)=edge(l)
go to 140
ngrid= j-1
if (grid(ngrid) .gt . (0.5-delf)) ngrid=ngrid-1

derive linear equations

do 300 j=1,2
theta=pi* (j-1) /2.d0
tc=dcos (theta)
ts=dsin (theta)
do 280 i=l,ngrid

mt=i+ (j-1) *ngrid
b (mt) = u (i) *tc-v (i) *ts
b(mt) = wt (i)*b(mt)
do 260 k-1,nfilt

temp=pi2* (k-1) *grid (i) -theta
a (mt,k)=wt (i) *dcos (temp)

continue
continue

continue

adding constraint on the error of group delay

ms=ms+l
b(ms) = O.dO
theta=-slope*grid(i)
if (jtype.eq. 2) theta=theta+pi/2 .dO
if(jtype.eq.3) theta=theta-pi/2.d0
do 305 k=l,nfilt

temp=pi2* (k-1) *grid (i) +theta
a (ms, k)=wgd* (k-1 .do-delay) *dcos (temp)

continue
continue

adding phase error constraint

do 325 k=l,nfilt
temp=pi2* (k-1) *grid (i) +theta
a (ms, k) =wphfdsin (temp)

continue
continue

C

340 if (ms.gt -4699) call error

call dqrdc (a, 4200,ms,nfilt,qraux, jpvt,work,O)
inf o=l
call dqrsl(a,4200,m~,nfilt,qra~x,b,qy,qty,h,eor,ah,110,inf0)

C
open (9, file='errorl)
rewind (9)
write (9,342) (eor(i), i=l,ms)

342 format (10x,e15.6)
close (9)
write(*, 343) info

343 format (lox, 'info=', i5)
if(info.ne.0) stop

C

c program output section
C

c first the impulse response is written to file 'r.datl
C

open (9, file=' r.datl)
rewind (9)
do 345 i=l,nfilt
write (9, *) h (i)

345 continue
close(9)

C

C

c the output is written to file 'l.lstl then to the screen
C

350 write (iout, 360)
360 format (lx, 70 (lh*) /22x, 29hfinite impulse response (fir) /

125x,21hdigital filter design/
223x,26hleast square approximation)

if (jtype.eq. 1) write (iout, 365)
365 format(28x,'bandpass filter'/)

if (jtype.eq.2) write(iout,370)
370 fonnat (28x, 'differentiator1/)

if (jtype.eq. 3) write (iout, 375)
375 format (28x, ' hilbert transformerr/)

write (iout, 378) nfilt
378 format (25x, ' filter length = ' , i3/)
c for screen output, the impulse response is not written

if (iout.eq.6) go to 457
write(iout, 380)

380 format(20x,'***** impulse response * * * * * ')
do 381 j=l,nfilt
write(iout,382) j,h(j)

381 continue
382 format (20x,'h(',i3,') = ',e15.8)
457 do 450 k=l,nbands,4

kup=k+3
if(kup.gt.nbands) kup=nbands
write(iout,38>) (1, j=k, kup)

385 format (/24x, 4 ('band', 13,8x))
write (iout, 390) (edge (2* j-1) , j=k, kup)

390 fonnat (2x, 'lower band edge', Sf 15.9)
write (iout, 395) (edge (2* j) , j=k, kup)

395 fonnat (Zx, 'upper band edge1,5f15.9)
if (jtype.ne.2) write (iout, 400) (fx(j) , j=k,kup)

400 format (2x, 'desired value', 2x, 5f15.9)
if (jtype.eq.2) write(iout, 405) (fx(j), j=k, kup)

405 format(2x, 'magn. slope ',2x, 5f15.9)
write (iout, 410) (wtx(j) , j=k, kup)

410 format (2x, 'weighting', 6x, Sf15.9)

write (iout, 419)
write (iout, 407) delay
format (2x, 'desired group delay', 2x, f 15.9)
if(igd.eq.0) go to 470
write (iout, 408) wgd
format (2x,'weight of group delay', fl5.9)
if (iph.eq.0) go to 450
write (iout, 471) wph
format (2x, ' weight of phase error' , f 15.9)
continue
write (iout, 460)
format (2x, 66 (lh-))
format (/,70 (lh*) /)
if (iout.eq.6) go to 461
iout=6
go to 350
write (*, 462)
format(lOx,44h*****filter specs are in the file l.lst*****/)
write (*, 463)
format (lox, 44h**filter impulse response is in file r .dat**/)

stop
end

subroutine eff (temp,slope, fx, wtx, lband, jtype,des,u,v)

function to calculate the desired frequency response
as a function of frequency.

implicit double precision(a-h,o-2)
dimension fx(10) ,wtx(lO)
if (jtype.eq.2) go to 2
if (jtype.eq.3) go to 3
t=-temp*slope
des=f x (lband)
u=des *dcos (t)
v=des*dsin (t)
return

return
des=f x (lband)
if (des.lt.1.d-5) go to 4
t=-temp*slope
u=des*dsin (t)
v=-des *dcos (t)
return
u=O .dO
v=O .dO
return
end
................................

function wate (temp, fx, wtx, lband, jtype)

function to calculate the weight function as a function
of frequency.

implicit double precision(a-h,o-2)
dimension fx(5) ,wtx(5)
if (jtype.eq.2) go to 1

9. A Fortran Program for IIR Filter Design 31 7

wate=wtx (lband)
return

1 i f (fx(1band) . l t . 0 . 0 0 0 1) go t o 2
wate=wtx (lband) /temp
return

2 wate=wtx (lband)
return
end

subroutine error
w r i t e (* , l)

1 format (I * * * * * * * * * * * * error i n input data * * * * * * * * * * ')
s t o p
end

9. A FORTRAN PROGRAM FOR IIR FILTER DESIGN
USING BUITERWORTH- CHEBYSHEV- AND
ELLIPTIC FUNCTION APPROXIMATIONS

The FORTRAN program is for designing digital and analog low-pass filters
based on the classical Butterworth, Chebyshev I and 11, and elliptic function
approximations. These methods are magnitude approximations and produce
minimum-phase filters. The basic theory, formulas, variable names, and re-
ferences are chosen to follow the development in Sections 7.2 and 7.3.

The main program starts with a section that takes input specifications from
the terminal. subroutine DFR() calculates the frequency response of the
designed filter at a specified number of equally spaced points and writes them to
a file named fm. The number of frequencies to be evaluated is first entered. Next,
a choice is made between the four basic approximations: Butterworth, Cheby-
shev I or 11, and elliptic function. An input is requested to determine whether a
low-pass, high-pass, bandpass, or band-rejection filter is desired. Then a choice
between analog and digital filter design is made. If the choice is digital, the
bilinear transformation is used, and the sampling rate must be entered. If an
elliptic filter was not chosen, the order is entered next. The pass-band and or
stop-band edges are entered in hertz; the maximum allowed pass-band ripple
and/or the micimum allowed stop-band attenuation are entered in positive dB.
Remember that for IIR filters, the pass-band ripple is defined as the total
difference between the maximum and the minimum frequency responses over
the pass band. This definition is in contrast to the FIR case. where the ripple is
the difference between the maximum (or minimum) and the ideal responses.

The band edges are converted from Hertz to radians. Then if a digital filter is
chosen, the frequencies are prewarped according to (7.1 12) by the PREWARP()
function to the appropriate analog prototype values. If a low-pass frequency
response was not chosen, the band edges W P and/or WS of the prototype low
pass are calculated from the entered specifications by (7.97). (7.98), and (7.100).

The pole and zero locations for the B~tterworth and Chebyshev I and I1 are

318 Appendix

calculated in the subroutine ROOTS1. Because the filter coefficients are real, the
poles and zeros occur in complex conjugate pairs. The program calculates only
one of the complex pair. It uses (7.11) for the Butterworth, (7.31) for the
Chebyshev, and (7.47) and (7.48) for the Chebyshev I1 in the D O 15 loop. For the
Chebyshev I and I1 the parameter E from (7.19) is calculated from (7.36) and then
used to calculate v0 by (7.29). The Butterworth roots are the foundation of this
subroutine. If a Chebyshev filter is desired, these roots are modified by the
hyperbolic functions of t.,. If a Chebyshev I1 filter is desired, these roots are
"inverted" and the zero locations are calculated in the indented section at label
11. Note that the root locations are scaled to the proper location by the WP or
WS band-edge frequencies. Also note the special case that must be considered
for an odd order, which always has a single real root.

The pole and zero locations for the elliptic function filter are calculated in the
subroutine ROOTS2. The parameter E in (7.58) is calculated by (7.90). The order
N is next determined from (7.93), which requires the calculation of four complete
elliptic integrals. The modulus k is calculated from (7.92) and scaled to give the
desired pass-band edge by WP. The complementary modulus k' is calculated

I

from k by (7.92). The second modulus k , , defined in (7.68), is calculated from ?
(7.89) and its complement k; from (7.91). The complete elliptic integrals are
calculated by the FORTRAN function CEI(), which uses the arithmetic-
geometric mean (AGM) implemented by the very efficient algorithm in pro- f -:
cedure cell, page 86 of B ~ l r i s c h . ~ ~ The order is calculated from (7.93). At this
point the approach in method A of Section 7.2.8 is taken, which calculates a new
k , to satisfy (7.71). This calculation is done in the function FK() by using a ratio
of the power series expansions 16.33.7 and 16.38.5 on page 579 of reference 21.
This approach is also taken in reference 23 and gives the maximum attenuation
in the stop band. At this point the program could easily be modified to take the
approach of paragraph B or C to minimize the pass-band ripple or the transition
bandwidth.

From the various parameters calculated from the input specifications, tl, is
computed from (7.82) and requires an inverse elliptic tangent function (elliptic
integral of the first kind). This calculation is performed by the AGM procedure
ell on page 85 of reference 22 in the FORTRAN function ARCSC(). The elliptic
sine, cosine, and dn functions are next calculated by the subroutine ELP()
which uses the sncndn procedure on page 89 of reference 22. In the DO 15 loop
the zero locations are calculated from (7.79), and the pole locations from (7.84).
These are scaled by WP to give the proper pass-band and stop-band band edges.

After the root locations for the prototype low-pass analog filter are
calculated, the frequency transformations of (7.99) or (7.101) are made in
subroutine FREQXFM() if the desired filter is a high-pass, bandpass, or band-
rejection filter. The bandpass and band-rejection transformations double the
order of the prototype filter.

Next, the root locations for the prewarped prototype analog filter are
transformed to the digital filter root locations by the bilinear transformation
described in Section 7.3.2. It is done by the subroutine BLT(), which uses

9. A Fortran Program for Low-Pass IIR Filter Design 31 9

(7.106). The zero and pole locations are displayed on the terminal by the
subroutine PRNT(). The root locations are converted into second-order
cascade section parameters by the subroutine CASCAD(). If the order is odd,
there is one first order section. The rule for ordering the sections for the low-pass
filter has the first section with the pole(s) and zero(s) farthest from the unit circle
and nearest the real axis in the z plane and progresses to the last section with the
poles nearest the unit circle and the zeros nearest those poles. That seems to give
reasonable quantization and scaling performance. The ordering and pairing for
the bandpass and band-rejection cases must be worked out separately. The
frequency response of the filter is calculated from these cascade parameters in
subroutine DFR(), and the response is written to the file "fm" by the subroutine
VIEW().

This program is intended to provide the basis for a flexible optimal filter
design system as well as to illustrate the implementation of the theory in
Sections 7.2 and 7.3. The numerical algorithms, mainly from reference 22, are the
most accurate and efficient known to the authors. No approximations other
than those necessary in the elliptic function algorithms are used. The structure of
the program gives the user considerable control over the design of a filter, and it
can be modified to fully implement the optimal design properties of the theory.

The input and output are primitive and may need to be customized by the
user. If it is desired to specify gains and band edges rather than the order for the
Butterworth and both Chebyshev filters, the equations for calculating order in
(7.15), (7.38), and (7.54) can be added to the input section. For more control over
elliptic function filter design, options can be added to allow a choice of methods
A, B, or C of Section 7.2.8.

Some applications require the impulse-invariant method of converting the
analog prototype into a digital one. The techniques of Section 7.3.1 could be
added as an option to the bilinear transformation. If the parallel structures of
Section 8.1.4 are preferred, a subroutine for calculating the residues of the poles
could be added to evaluate the parallel structure coefficients. If analog filter
design is desired, everything is calculated in the program; only an output section
is needed. For some exacting applications, double-precision arithmetic must be
incorporated, testing for convergence in the elliptic function algorithms made
more stringent, and array sizes enlarged. The programs are also written in a style
that allows easy conversion to other languages.

C THIS IS A IIR FILTER DESIGN PROGRAM
C FOR BUTTERWORTH, CHEBYSHEV, CHEBYSHEV 11, & ELLIPTIC
C FOR LOWPASS, HIGHPASS, BANDPASS, AND BANDREJECT RESPONSES
C ANALOG AND DIGITAL FILTERS USING THE BLT
C PASS AND STOPBAND EDGES ARE IN HERTZ FOR A SAMPLING
C RATE OF 1. MAXIMUM PASSBAND RIPPLE AND MINIMUM
C STOPBAND ATTENUATION ARE IN POSITIVE DB.
C C. S. BURRUS, RICE UNIVERSITY, JAN 1987 c--

DIMENSION PR(20), PI(201, ZR(201, ZI(20)
DIMENSION Bl(20) ,B2(20) ,A1(20) ,A2(20)
DIMENSION FM(530)
COMMON /PARM/R1,R2,WP,WSrN2,N,SR,KA,KAD,KOD,KF
COMMON /ROOT/PR,PI,ZR,ZI

C---------INPUT SPECIFICATIONS, PREWARPING, AND PREFREQXFRMING-------
PRINT *,'ENTER NUMBER OF FREQS TO DISPLAY'

READ *, KK
10 PRINT *,'ENTER 1 FOR BW, 2 FOR CHEBY ,3 FOR ICHEBY, 4 FOR ELL'

READ *, KA
PRINT *,'ENTER 1 FOR LOWPASS, 2 FOR HP, 3 FOR BP, OR 4 FOR BR'

READ *. KF
PRINT * , I ENTER 1 FOR ANALOG, 2 FOR DIGITAL'

READ *,KAD
TP = 6.283185307179586

IF (KAD.EQ.l) GOT0 12
PRINT *,'ENTER SAMPLE RATE'

READ *,SR
12 IF (KA.EQ.4) GOT0 20

PRINT *,'ENTER THE ORDER'
READ *,N

IF (KF.GE.3) GOT0 15
PRINT *,'ENTER THE BAND EDGE IN UN-NORMALIZED HZ'

READ *,FP
WP = PREWRP (TP*FP)
IF (KF.EQ.2) W P = l.O/WP
IF (KA.EQ.l) GOT0 30

PRINT *,'ENTER PASSBAND RIPPLE OR STOPBAND ATT IN POSITIVE DB'
READ *, R1
IF (KA.EQ.3) WS = WP
GOT0 30 -.-- - -

15 PRINT *,'ENTER THE LOWER 6 UPPER BAND EDGES IN HERTZ'
READ *.Fl.F2
wl ~= P~EWRP(TP*FI)
W2 = PREWRP (TP*F2)
WO = SQRT (Wl*W2)
WP = (W2*W2-W0*W0) /W2
IF (KF.EQ.4) WP = 1/WP
IF (KA.EQ.l) GOT0 30

PRINT *,'ENTER PASSBAND RIPPLE OR STOPBAND ATT IN + DB'
READ *,R1
IF (KA.EQ.3) WS = WP
GOT0 30

20 IF (KF.GE.3) GOTO25

PRINT *,'ENTER PASS AND STOPBAND EDGES IN UN-NORMALIZED HZ'
READ *,FP,FS
WP = PREWRP (TP*FP)
WS = PREWRP fTP*FSI

PRINT ENTER PASSBAND RIPPLE AND STOPBAND ATTENUATION IN +DB'
READ *,Rl,R2
GOT0 35

25 PRINT *,'ENTER Fl,F2,F3,F4 FOR BP OR BR FREQS'
READ *,FlnF2,F3,F4
W1 = PREWRP(TP*Fl)
W2 = PREWRP (TP*F2)
W3 = PREWRP (TP*F3)
W4 = PREWRP(TP*F4)
WO = SQRT(W3*W2)
WP = (W3*W3-W0*W0) /W3
WS = (W4*W4-Wo*Wo) /W4
WST= (WO*WO-Wl*Wl) /W1
IF (WST.LT.WS) WS = WST
IF (KF.EQ.3) GOT0 26

WO = SQRT (Wl*W4)
WP = W1/ (Wo*Wo-W1*W1)
WS = W2/ (Wo*Wo-W2*W2)
WST= ~3/(W3*W3-WO*WO)
IF (WST.LT.WS) WS = WST

26 PRINT *,'ENTER PASSBAND RIPPLE AND STOPBAND ATTENUATION IN + DB'
READ *,Rl,R2
GOT0 35

C-------------BUTTERWORTH, CHEBYSHEV, AND ELLIPTIC FILTERS--
30 CALL ROOTSl

GO TO 37
35 CALL ROOTS2

C---------HIGHPASS, BANDPASS, AND BAND REJECT XFORMS--------
37 IF (KF.EQ.1) GOT0 65

CALL FREQXFM (WO, PR, PI)
CALL FREQXFM (WO, ZR, Z I)
IF (KF.EQ.2) GOT0 65

N2 = N
N = 2*N
KOD = 0

65 IF (KAD.EQ.l) GOT0 80
C-------------DIGITAL BILINEAR XFORM------------------------

CALL BLT (N2, SR, PR,PI)
CALL BLT (N2, SR, ZR, ZI)
PRINT *,'Z PLANE'

CALL PRNT (N2, PR,PI, ZR,ZI)
C-------------CASCADE STRUCTURE AND FREQUENCY RESPONSE------
80 CALL CASCAD(PR,PI, ZR,ZIrB1,B2,A1,A2,G)

IF (KAD.EQ.2) CALL DFR(KKtB1,B2,A1,A2,FM,G)
IF (KAD.EO.1) CALL AFR

. . .
GOTO 10
END

C-------------END OF MAIN PROGRAM-------------------------

C-------------BW, CHEBY IhII POLE & ZERO LOCATIONS--------
SUBROUTINE ROOTSl
DIMENSION PR(20) ,PI(20) ,ZR(20) ,ZI (20)
COMMON /pARM/Rl, R2, WP, WS,N2,N, SR, KA, KAD, KOD, KF
COMMON /ROOT/PR,PI,ZR,ZI
ARCSNH (X) = ALGG (X+SQRT (X*X+l))

L = O
N2 = (N+1)/2
KOD = 1
IF (MOD(N,2) .EQ.O) KOD = 0
IF (KOD.EQ.0) L = 1

SM = 1.0
CM = 1.0

IF (KA.EQ.1) GO TO 10
VO = ARCSNH (1/E) /N
SM = SINH(V0)
CM = COSH (VO)

10 DO 15 J = 1, N2
ARG = 1.570796326794897*L/N
TR = -SM*CGS (ARG)
TI = CM*SIN(ARG)
ZR(J) = 0.0
ZI(J) = 1E25
IF (KA.EQ.3) GOT0 11

PR(J) = W*TR

15 CONTINUE
RETURN
END

C-----------ELLIPTIC FILTER POLE & ZERO LOCATIONS------
SUBROUTINE ROOTS2
REAL K, KC, KK, KKC, K1, KlC, KK1, KKlC
DIMENSION PRI20) .PII2O) .ZR(20) ,ZI(20) . . , . .
COMMON /ROOT~PR:PI.ZR.ZI
COMMON /PARM/R~; ~ 2 ; WP;WS,N~,N,SR,KA,KAD,KOD,KF
COMMON /ELP~/SN,CN,DN

C
E = SQRT(lO.O**(O.l*Rl)-1)

K = WP/WS
KC = SQRT (1-K*K)
K1 = E/SQRT(lO.** (O.l*R2) -1)
K1C = SQRT (1-Kl*Kl)
KK = CEI (KC)
KKC = CEI (K)
KK1 = CEI (KlC)
KKlC= CEI (Kl)
XN = KK*KKIC/KKI/KKC
N = INT(XN + 1.0)

PRINT *,IN= ',N
KI = FK(N*KKC/KK)
K1C = SQRT (1-Kl*Kl)
KK1 = CEI (KlC)

L = o
N2 = (N+l) /2
KOD = 1

IF(MOD(N,2) .EQ.O) KOD = 0
IF(KOD.EQ.0) L = 1

vo = (KK/KKI/N) *ARCSC (I/E,KI)
CALL ELP (VO. KI . . .
SM = SN
CM = CN
DM = DN
ZI(1) = 1E25
DO 15 J = 1, N2

ARG = KK*L/N
CALL ELP (ARG, KC)
ZR(J) = 0.0
IF (L.NE.0) ZI(J) = WS/SN
PR(J) = -hT*SM*CM*CN*DN/ (1- ((DN*SM) **2.O))
PI (J) = ~T*DM*SN/ (I-((DN*SM) **2.0))
L = L + 2

15 CONTINUE
RETURN
END

C----------PREWARP OF FREQS BEFORE BLT--------------------
FUNCTION PREWRP (WW)
COMMON /PARM/Rl,R2,WP,WS,N2,N,sR,KA,KAD,KOD,KF

IF (KAD.EQ.l) PREWRP = WW
IF (KAD.NE. 1) PREWRP = 2 .O*SR*TAN (WW/2.0/SR)

RETURN
END

C----------DIGITAL BILINEAR TRANSFORMATION----------------
SUBROUTINE BLT (N2, SR, R, I)
REAL SR, R(l), I(1) -

TI = I (J)
IF (ABS (TI) .GT.lE15) GOT0 10
IF (ABS (TR) .GT.lE15) GOT0 10

TD = (A - TR) **2 + TI*TI

R(J) = -1.0
I(J) = 0.0

CONTINUE
RETURN
END
--------FREQUENCY TwSFORM&TION--------------------
SUBROUTINE FREQXFM (WO, PRr PI)
REAL PR(l), PI(1)
COMPLEX PC, SC
COMMON /PARM/Rl,R2, WPrWSrN2, Nr SR, KAr KADr KODI KF

NT = 2*N2+1
IF (KF.GE.3) GOTO 12
DO 10 J=1, N2

IF (PI(J) .GT.lE15) GOT0 7
PC = CMPLX (PR(J), PI(J))
sc = l.O/PC
PR(J) = -ABS (REAL(SC))
PI (J) = ABS (AIMAG (SC))
GOT0 10
PR(J) = 0.0
PI(J) = 0.0

CONTINUE
RETURN
DO 14 J=1, N2

IF (PI (J) .GT. 1E15) GOT0 13
PC - CMPLX (PR(J), PI(J))

IF (KF.EQ.4) PC = l.O/PC
SC = (PC - CSQRT (PC*PC-4*WO*WO)) /2.0
PR(J) = -ABS (REAL(SC))
PI(J) = ABS (AIMAG(SC)
SC = (PC + CSQRT (PCfPC-4*WOfWO)) /2.0
PR (NT-J) = -ABS (REAL (SC))
PI(NT-J) = ABS(AIMAG(SC))
GOT0 14
PR(J) = 0.0
PR(NT-J) = 0.0
PI(J) = 1E17
PI(NT-J) = 0.0
IF (KF.EQ.4) PI(J) = WO
IF (KF.EQ.4) PI(NT-J) = WO

CONTINUE
RETURN
END

C-----------COMPLETE ELLIPTIC INTEGRAL---------------
FUNCTION CEI (KC)
REAL KC

C
A = 1.0
B = KC
DO 10 J = 1, 20

AT = (A+B) /2
B = SQRT (A*B)
A = AT
IF((A-B)/A .LT. 1.2E-7) GO TO 15

10 CONTINUE
PRINT *,ICE1 FAILED TO CONVERGE'

15 CEI = 1.570796326794896/A
RETURN
END

C-------------ELLIpTIC FUNCTIONS------------------
SUBROUTINE ELP (X, KC)
REAL KC
DIMENSION AA(16) ,BB(16)
COMMON /ELPI/SN,CN,DN

IF (X.EQ.0) GOT0 20
1 = 1
A = 1.0
B = KC

4 CONTINUE
AA(1) = A
BB(1) = B
AT = (A+B)/2
B = SQRT(A*B)
A = AT
IF(((A-B)/A) .LT. 1.3E-7) GO TO 15
IF (I.GT.15) GOT0 10
I = I + 1

GOT0 4
10 PRINT *,'ELP FAILED TO CONVERGE'
15 C=A/TAN(X*A)

16 CONTINUE
E = C*C/A
C = C*D
A = AA(1)
D = (E+BB (I)) / (E+A)
I = 1-1

IF(I.NE.0) GO TO 16
SN = l/SQRT(l+C*C)
CN = SN*C
DN = D
RETURN

20 SN = 0.0
CN = 1.0
DN = 1.0

RETURN
END

c--------------- ARC ELLIPTIC TANGENT---------------
FUNCTION ARCSC (U,KC)
REAL KC
A = 1.0
B = KC
Y = l.O/U
L = O
DO 10 J = 1, 15

BT = A*B
A = A + B
B = 2.0*SQRT (BT)
Y = Y - B T / Y
IF (Y.EQ.0) Y = SQRT(BT)*lE-10

IF (ABS (A-B) .LT . (A*l. 2E-7)) GOT0 15
L = 2*L
IF (Y.LT.0) L = L + 1

10 CONTINUE
PRINT *,'ARCSC FAILED TO CONVERGE'
GOT0 16

15 IF (Y.LT.0) L = L + 1
16 ARCSC = (ATAN(A/Y) + 3.141592654*L)/A

RETURN
END

C--------------MoDULUS FROM RATIO OF K/K'---------------
FUNCTION FK (U)

C

D = D*Q
IF (C.LT. 1E-7) GOT0 15

10 CONTINUE
PRINT *,'FK FAILED TO CONVERGE'

15 FK = 4*SQRT (Q) * (B/A) **2
RETURN
END

SUBROUTINE PRNT(N2,PRnPI,ZR,ZI)
DIMENSION PR(20) ,PI (20), ZR(20), ZI (20)

PRINT *,' #, ZEROS (REAL, IMAG), POLES (REAL, IMAG)'
DO 1 1=1,N2+1

WRITE (*,lo) I,ZR(I) ,ZI(I) ,PR(I),PI(I)
1 CONTINUE
10 FORMAT (13,4F14.6)

RETURN
END

C-----------CASCADE STRUCTURE PARPAMETERS--------------

SUBROUTINE CASCAD(PR,PI, ZR, ZI,B~,B~,A~, A2)
DIMENSION PR(l),PI(l) ,ZR(l) ,ZI(l)
DIMENSION ~l(20) ,B2 (20) ,~l(20) ,A2 (20)
COMMON /PARM/Rl,RZ,WP,WSnN2,N,SR,KA,KRD,KOD,KF

PRINT *, N2,' CASCADE STAGES, EACH OF THE FORM:'
PRINT *,'F(z) = (z*z + Bl z + B2)/(z*z + A1 Z + A2)'
K = O
IF ((MOD(NZ,Z).NE.O).AND.(KF.EQ.3)) K = 1
JO = 1
IF (KOD.EQ.0) GOT0 10

Bl(1) = 1.0
IF (KF.EQ.2) Bl(1) = -1.0
B2(1) = 0.0
Al(1) = -PR(l)
A2(1) = 0.0
WRITE (*,30) JO, Bl(JO), BZ(JO), Al(JO), A2(JO)
JO = 2

DO 15 J = JO, N2
Bl(J) = -2.0*ZR(J)
B2(J) = ZR(J)*ZR(J) + ZI(J)*ZI(J)
IF ((J.EQ. 1) .AND. (K.EQ. 1)) B1 (J) = 0.0
IF ((J.EQ.l) .AND. (K.EQ. 1)) B2 (J) = -1.0

A1 (J) = -2.0*PR(J)
A2(J) = PR(J)*PR(J) + PI(J)*PI(J)

IF (PI(J) .EQ.O) Al(1) = -PR(l)-PR(N2+1)
IF (PI (J) .EQ.O) A2 (1) = PR(1) *PR(N2+1)

WRITE (*,30) J, Bl(J), B2(J), Al(J), A2(J)
CONTINUE
RETURN
FORMAT (' ' ,13,2F12.6, ' ' ,2F12.6)
END

--- ANALOG FILTER FREQ RESPONSE---------------------
SUBROUTINE AFR
PRINT *,'ANALOG PART NOT FINISHED'
RETURN
END

c-------------DIGITAL FILTER FREQ RESPONSE--------------------

SUBROUTINE DFR (KK, B1, B2, A1, A2, FM)
DIMENSION Bl(1) ,B2(1) eAl(1) rA2(1)
DIMENSION FM (1)
COMMON /PARM/Rl,R2, WP, WS,N2, N, SRr KA, KADr KOD, KF

C
Q = 3.141592654/KK
DO 20 J = 1, KK+l

W = Q* (J-1)
W2 = 2 .o*w
BR = 1.0
BI = 0.0
AR = 1.0
A1 = 0.0
I0 = 1
IF (KOD.EQ.O) GOTO 10;

BR = COS(W) + Bl(1)
BI = SIN(W)
AR = COS(W) + Al(1)
A1 = SIN(W)
10 = 2

10 DO 15 I = 10, N2
BRT = COS (W2) + B1 (I) *COS (W) + B2 (1)
BIT = SIN (W2) + B1 (I) *SIN (W)
ART = COS(W2) + A ~ (I) *COS(W) + A2 (I)
AIT = SIN(W2) + A1 (I) *SIN(W)
BRS = BR*BRT - BI*BIT
BI = BR*BIT + BI*BRT
BR = BRS
ARS = AR*ART - AI*AIT
A1 = AR*AIT + AI*ART
AR = ARS

15 CONTINUE
FM(J) = SQRT ((BR*BR + BI*BI) / (AR*AR + AI*AI))

20 CONTINUE
RETURN
END

C-----------OUTPUT FREQUENCY RESPONSE------------------

SUBROUTINE VIEW (KK, FM)
DIMENSION FM(1)

C

OPEN (l,FILE='fmn)
REWIND (1)
FO = O.S/KK
DO 10 J = 1, KK+1

F = FO*(J-1)
WRITE (1,100) F, FM(J)

10 CONTINUE
100 FORMAT(lOX,F15.8,E15.8)

RETURN
END

REFERENCES

[21] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions,
Washington, D.C.: National Bureau of Standards, 1964, Chaps. 16 and 17.

[22] R. Bulirsch, "Numerical Calculation of Elliptic Integrals and Elliptic Functions,"
Numer. Math. 7 78-90 (1965).

[23] A. H. Gray and J. D. Markel, IEEE Trans ASSP, 1976.

10. Least Squared Equation-Error Criterion 327

10. A FORTRAN PROGRAM FOR LOW-PASS FIR FILTER
DESIGN USING A LEAST SQUARED
EQUATION-ERROR CRITERION

The FORTRAN program for designing digital IIR filters uses a discrete LS
equation-error criterion. In the limit, where the number of specified frequency-
response points is equal to the number of filter coefficients, the method becomes
a frequency-sampling design technique. The basic theory, formulas, and variable
names are chosen to follow the development in Section 7.4.2.

The main program starts with a section that takes input specifications from
the terminal. A subroutine calculates the frequency response of the finished filter
design at a specified number of equally spaced points for display on the terminal
and writes them into a file for further use. The number of frequency points to be
evaluated is entered first. The transfer function is assumed to be of the form

as in equation (7.116). The order of the numerator M and the order of the
denominator N are entered next. Note that the number of unknown coefficients
in the numerator is M + 1 and in the denominator is N. Then the number of
frequency samples to be approximated is entered as L1 and the band edge as F P
in Hertz. The minimum number of frequencies that will uniquely determine the
M + N + 1 filter coefficients is M + N + 1. See Section 7.4.1.

The next section sets the L1 desired frequency-response samples in two
arrays, with C(J) being the samples of the real part and D(J) being the samples of
the imaginary part. Note that the FORTRAN indices start at 1 rather than 0 as
the equations do. The program assumes real filter coefficients. Therefore, the real
part of the frequency response is even, and the imaginary part is odd. This fact,
coupled with the fact that the frequency response of all digital filters is periodic,
means that C(J) = C(L1 + 1 - J) and D(J) = - D(L1 + 1 - J). This also im-
plies that, for all cases, D(l) = 0, and, for even L1, D(L1/2 + 1) = 0. The number
of frequency samples is approximately L1/2, but because the samples are
complex valued, the number of real values required is L1. For example, if
L1 = 5, there will be three independent real-part samples to specify and two
independent imaginary-part samples. For L1 = 4 there will be three independ-
ent real-part samples and one imaginary-part sample.

The next section of the program takes the IDFT of the frequency-sample
vector as required in (7.120) and (7.121). The subroutine IDFT() takes into
account that the coefficients are real and the frequencies have symmetries.

The next two sections, in the DO 20 and D O 21 loops, form the H I , H z , and
h, matrices described in (7.124). They are labeled H1, H2, and HO in the
program. Equation (7.125) or (7.128) is solved by the subroutines from the
software package LINPACK.' If L1 = M + N + 1, it is a matrix inversion. If
L l > M + N + 1, a LS equation error is found, as in (7.130), by LINPACK.

328 Appendix

Note that this does not give a LS error approximation to the desired frequency
response, but a LS error solution of equation (7.127).

In the next two sections the normalized A0 coefficient is appended to the
A(J) vector, and the B(J) vector is calculated from (7.126). The actual design
process is now complete. An analysis section follows, which calculates the
frequency response from the filter coefficients in A and B by using subroutine
DFR(). The resulting K frequency-response values are written to the file fm by
subroutine VIEW().

This program is a straightforward implementation of the theory in Sections
7.4.1 and 7.4.2. The input and output are primitive and need to be customized by
the user. The various modifications described in 7.4.2 can easily be added. Recall
that this procedure does not minimize the usual solution error described in
(7.1 32) or (7.133). It minimizes the squared equation error defined in (7.128). One
of the powerful features of this approach is the approximation of a complex
desired frequency response. Experience shows that very surprising results are
often obtained if the desired frequency response is not close to what an IIR filter
of the specified order can achieve. The inclusion of phase specifications is a
significant complication compared to magnitude-only approximations. A root-
finder subroutine could be added to factor the numerator and denominator of
H(z), and the cascade structure section from Program 8 could easily be added.

A program to implement Prony's method for time-domain design of IIR
filters, as described in Section 7.5, could easily be written by modifying this
program. The formation of the basic matrices in (7.138) and their solution in
(7.139) and (7.140) are the same as done here. The input section would have to be
changed and the IDFT would have to be removed.

...
A FREQUENCY-SAMPLING AND DISCRETE
LEAST-SQUARED-EQUATION-ERROR IIR FILTER DESIGN
PROGRAM. REQUIRES LINPACK.
NUMERATOR ORDER: M; M+1 COEFFS: B (K)
DENOMINATOR ORDER: N; N+1 COEFFS: A(K) , A(1) =1
NUMBER OF FREQ SAMPLES: L+1
FREQ SAMPLE METHOD: L = M + N
DISCRETE LEAST SQR: L > M + N

C.S. BURRUS, RICE UNIV., FEB 1986

REAL ~ (5 0) ,B(50) ,C(501) tD(501) tH(501) rH0 (501) tQAX(50)
REAL FM(530)
REAL ~1(50,50), H2 (501,50)

L

LDX = 501
PRINT *,'FS AND LS DESIGN OF AN IIR FILTER'
PRINT *,'ENTER NUMBER OF FREQUENCIES TO BE EVALUATED'
READ *. KK

1 PRINT ;, ENTER NUMERATOR ORDER, DENOMINATOR ORDER'
READ *, M, N
PRINT *,'ENTER THE NUMBER OF FREQ SAMPLES TO OPTIMIZE OVER'
READ *, L1

L = L1- 1
L M = L - M
M l = M + l
N l = N + l
ML = (L1+1) /2

C---------------SET THE DESIRED FREQUENCY RESPONSE----
PRINT *,'ENTER THE ',ML,' REAL PART SAMPLES'
READ *, (C(J) , J=l,ML)
PRINT *,'ENTER THE ',ML,' IMAG PART SAMPLES'
READ *, (D(J) , J=l,ML)

C---------------TAKE THE INVERSE DFT------------------

CALL IDFT (Ll, C, D, H)
C---------------FOm THE MATRIX--------------------

DO 20 J = 1, M1
I = J
DO 10 K = 1, N1

IF (I.LT.l) I = L1
Hl(J,K) = H(1)
I = I - 1

10 CONTINUE
20 CONTINUE

C----------------FORM THE H2 AND HO MATRICES----------

I0 = M1
DO 21 J = 1, LM

HO (J) = -H (IO+1)
I = I0
DO 11 K = 1, N

IF (I.LT.l) I = L1
HZ (J,K) = H (I)
T = T - 1 - - -

11 CONTINUE
I0 = I0 + 1

C---------------LEAST SQUARES SOLUTION FROM LINPAC----
CALL SQRDC (H2, LDX, LM,N,QAX,DUM,DUM, 0)
CALL SQRSL (H2, LDX,LM,N,QAX,HO,DUM,HO,A,DUM,DUM, 100, INFO)

C---------------ADD THE UNITY TERM TO A---------------

DO 25 J = 1, N
A (N+2-J) = A (N+1-J)

25 CONTINUE
A(1) = 1.0

C---------------CALCULATE THE NUMERATOR COEFFS--------
DO 40 J = 1, M1

BT = 0.0
DO 30 K = 1, N1

BT = BT + Hl(J,K) *A(K)
30 CONTINUE

B(J) = BT
40 CONTINUE

C-------------OUTPUT COEFFS AND FREQ RESPONSE---------
PRINT *,'NUMERATOR COEFFS ARE:'
PRINT *, (B(J) ,J=l,Ml)
PRINT *,'DENOMINATOR COEFFS ARE:'
PRINT *, (A(J) , J=1, N1)
CALL DFR (N, M, KK, A, B, EM)
CALL VIEW (KK, FM)
GOT0 1
END

330 Appendix

C
SUBROUTINE DFR(NtMr KKr A, Br FM)
REAL A(1)n B(1)t FM(1)
Q = 3.141592654/KK
DO 20 J = 1, KK+1

BR = B(M+l)
BI = 0.0
QQ = Q* (J-1)
DO 10 I = 1, M

BR = BR + B(M+l-I) *COS(QQ*I)
BI = BI + B(M+l-I) *SIN(QQ*I)

CONTINUE

15 CONTINUE
FM(J) = SQRT((BR*BR + BI*BI)/(AR*AR + AI*AI))

20 CONTINUE
RETURN
END

c---
SUBROUTINE IDFT(N,C,D,H)
REAL C(l), D(1)r H(1)

C
Q = 6.283185307179586/N
M = (N+l) /2
DO 20 J = 1, N

HT = 0.0
DO 10 K = 2, M

QQ = Q* (J-1) * (K-1)
HT = HT + C (K) *COS (QQ) - D (K) *SIN(QQ)

10 CONTINUE
HT = C(1) + 2*HT
IF (MOD(N,2) .EQ.O) HT = HT + C(M+l) *COS(3.141592654*(J-1))
H (J) = HT/N

20 CONTINUE
RETURN
END

c---
SUBROUTINE VIEW (KK, FM)
DIMENSION FM(1)
OPEN (1, FILE=' fm')
REWIND (1)
DO 10 J = 1, KK

F = 0.5*(J-1)/KK
WRITE (1,100) F,FM(J)

10 CONTINUE
100 FORMAT (10X,F15.8,E15.8)

RETURN
END

11 -13. TMS32010 ASSEMBLY LANGUAGE
PROGRAMS

This section contains three assembly language programs for the TMS32010.
Program FIR21 implements the length-21 FIR filter described in the design
example in Chapter 5. It is written to be run on the Texas Instruments (TI) EVM
evaluation module board in conjunction with the TI AIB analog interface
board. For details on calculation and scaling of the coefficients, see Chapter 5.

11-13 TMS 32010 Assembly Language Programs 331

The second and third programs are implementations of the fourth-order
elliptic filter described in the design example in Chapter 8. These programs are
written to be run on the simulator provided by TI for the TI or IBM PC. A few
additional instructions are required to run these programs on the EVM/AIB
boards.

The second program uses the transpose structure for each of the cascaded
second-order blocks, and the third program uses the direct structure for each of
the cascaded second-order blocks. We were careful to avoid overflow limit
cycles, by using the overflow mode of arithmetic. This required that the output
be scaled up at the end of the programs with the APAC instruction, because
of the implementation of overflow detection on the TMS32010. If the same
filter were implemented on the TMS32020, these extra instructions would
not be necessary. For details on calculation and scaling of the coefficients, see
Chapter 8.

IDT ' ~ 1 ~ 2 1 '

.
* NAME DATA LOCATIONS *
.

CLCK EQU 0
MODE
MASK
SIGN
CONV
ONE
YN
X 1
X 2
X 3
X 4
X 5
X 6
X 7
X 8
X 9
X I 0
X I 1
X 1 2
X 1 3
X 1 4
X 1 5
X 1 6
X I 7
X 1 8
X 1 9
X 2 0
X 2 1
H 1
H 2
H 3
H 4
H 5
H 6
H 7
H 8
H 9
H I 0
H 1 1

EQU
EQU
EOU

E ~ U
EQU

EQU
EQU
EQU
EOU
E ~ U
EQU
EQU

EQU
EQU
EOU
E ~ U
EOU

EQU
EQU
EQU
EOU

.
* START OF PROGRAM *
.
*

AORG 0
B START

*
* * * SETDATA * * * *
DCLCK DATA >200
DMODE DATA >8
DMASK DATA >FFFO
DSIGN DATA >a000
DCONV DATA >do00
DONE DATA >1
DH1 DATA >OllD

DATA >035D
DATA >FD82
DATA >00E9
DATA >OlAE

DATA >FC62
DATA >02BC
DATA >01F2
DATA >F60F
DATA >OF=
DATA >2AAF *

.
* INITIALIZATION CODE *
.
*
START LDPK 0

sow
DINT
LACK DCLCK
TBLR CLCK
LACK DMODE
TBLR MODE
LACK DMASK
TBLR MASK
LACK DS IGN
TBLR SIGN
LACK DCONV
TBLR CONV
LACK DONE
TBLR ONE

LACK DH1
TBLR H1
ADD ONE
TBLR H2
ADD ONE
TBLR H3
ADD ONE
TBLR H4
ADD ONE
TBLR H5
ADD ONE
TBLR
ADD
TBLR
ADD
TBLR
ADD
TBLR
ADD
TBLR
ADD
TBLR

H 6
ONE
H7
ONE
H8
ONE
H9
ONE
HI0
ONE
HI1

BRANCH AROUND DATA

PROGRAM PARAMETERS

FILTER COEFFICIENT

SET DATA PAGE POINTER

READ IN PROGRAM PARAMETERS

READ IN FILTER COEFFICIENTS

"

.
* INITIALIZE AIB *
.
*

OUT CLCK, PA1
OUT MODE, PA0 *

.
* WAIT FOR NEXT SAMPLE * .
*
FILT BIOZ GET

B FILT
*
.
+ IMPLEMENT THE FILTER *

SET SAMPLING RATE
SET A19 MODE

BRANCH ON NEW SAMPLE

COMPUTE NEXT OUTPUT

.
*
GET IN X1, PA2 READ IN SAMPLE

LAC X1 CONVERT SAMPLE TO TWO'S COMPLEMENT
XOR MASK
AND MASK
ADDS SIGN
SACL X1 *
ZAC
LT X2 1
MPY H1
LTD X2 0
MPY H2
LTD X19
MPY H3
LTD X18
MPY H4
LTD X17
MPY H5
LTD X16
MPY H 6
LTD X15
MPY H7
LTD X14
MPY H 8
LTD X13
MPY H 9
LTD X12
MPY H10
LTD X11
MPY HI1
LTD XI0
MPY HI0
LTD X9
MPY H9
LTD X8
MP Y H8
LTD X7
MPY H 7
LTD X6
MPY H6
LTD X5 . . .
MPY H 5
LTD X4
MPY H 4
LTD X3
MPY H 3
LTD X2
MPY H2
LTD X1
MPY H 1

ADD C O W , 15 CONVERT TO BINARY FORMAT
SACH YN,1
OUT YN,PA2 OUTPUT Y (N)
B FILT WAIT FOR NEXT SAMPLE
END .

.
PROGRAM 12

.

.
*

* FOURTH ORDER ELLIPTIC LOWPASS FILTER, TWO CASCADED
BIQUAD SECTIONS (TRANSPOSE STURCTURE). FILTER *
COEFFICIENTS OF EACH SECOND-ORDER SECTION ARE
SCALED BY THE LARGEST L1 N O W

* OF THE IMPULSE RESPONSE OF EACH SUMMING NODE, THUS
GUARANTEEING NO OVERFLOW. THE FILTER OUTPUT IS
SCALED UP TO IMPLEMENT AN OVERALL GAIN OF ONE, AND
THUS THERE IS A POSSIBILITY OF OVERFLOW THERE. THE
UNSCALED REPRESENTATION OF THE OUTPUT (BEFORE THE *
MULTIPLICATION BY HO) MRY BE USED TO GUARANTEE NO *

* OVERFLOW AT THE FILTER OUTPUT AS WELL. *
*

* THE NOTATION (Q15*2) INDICATES THAT THE COEFFICIENT *
IN THE PROGRAM IS TWICE THE HEX EQUIVALENT OF THE *
DECIMAL NUMBER. *
IN THIS PROGRAM, THE SECOND INDEX OF COEFFICIENTS *
AND VARIABLES INDICATES THE SECTION THE COEFFICIENT *
(VARIABLE) BELONGS T0,EG. A21 IS THE COEFFICIENT OF

* Z**-2 FOR THE FIRST STAGE. IN CHAPTER 8, THE
* OPPOSITE CONVENTION IS USED,I.E., a12 IS
* THE COEFFICIENT OF Z**-2 IN THE TEXT.
.

XN EQU 0
YN1 EQU 1
Y21 EQU 2
Y11 EQU 3
YN2 EQU 4
Y22 EQU 5
Y12 EQU 6
A1 1 EQU 7
A21 EQU 8
B01 EQU 9
B11 EQU 10
B2 1 EQU 11
A12 EQU 12
A2 2 EQU 13
B02 EQU 14
B12 EQU 15
B22 EQU 16
HO EQU 17
ONE EQU 18

AORG 0
RSLOC B INIT

DATA >6730 - A l l = 0 . 4 0 3 0 7 0 3 (Q15 * 2)
DATA >C449 -A21 = -0 .2332662 (Q15 * 2)
DATA >303C BO.1 = 0 . 1 8 8 4 1 3 3 (Q15 * 2)
DATA >4E3A B11 = 0 .3055656 (Q15 * 2)
DATA >303C B21 = 0 . 1 8 8 4 1 3 3 (Q15 2)

DATA >F2D6 -A12 = - 0 . 0 5 1 4 2 1 4 (Q15 * 2)
DATA >99F3 -A22 = - 0 . 7 9 7 2 8 6 1 (Q15)
DATA >59A9 B02 = 0 . 3 5 0 2 2 9 1 (Q15 * 2)
DATA >4030 B12 = 0 . 2 5 0 7 2 7 4 (Q15 * 2)
DATA >59A9 B22 = 0 . 3 5 0 2 2 9 1 (Q15 * 2)

DATA

WONE
*
I N I T

DATA

LDPK
SOVM
LARK
LARK
LACK
LARP
TBLR
SUB
BAN2

ARO, ONE
A R 1 , l l
WONE
ARO
*-,AR1
ONE
TABLER

T ABLER

*
ZFILT ZAC

SACL
SACL
SACL
SACL

IIRZTS
LPSECl

IN
LT
MPY
ZALH
APAC
SACH
MPY
ZALH
LTA
MPY
APAC
SACH
MPY
PAC
LT
MPY
APAC
SACH

LT
MPY

ZALH Y22
APAC
SACH YN2
MPY 812
ZALH Y12
LTA YN2
MPY A12
APAC
SACH Y22
MPY A22
PAC

APAC
LT YN1
MPY B22
APAC
SACH Y12

LT YN2
MPY HO
PAC
APAC
APAC
APAC
APAC
APAC
AP AC
APAC
SACH YN2

*
OUT YN2,PAI
B IIRZTS

*
END

*

MAKE A22 Q15*2
Q15
Q15*2

SCALE YN BACK UP -- NOTE THAT
OVERFLOW (SATURATION) MAY OCCUR
HERE IF OUTPUT MAGNITUDE EXCEEDS 1

.
PROGRAM 13

.

*
FOURTH ORDER ELLIPTIC LOWPASS FILTER, TWO CASCADED *
BIQUAD (DIRECT FORM 2 STRUCTURE) SECTIONS. FILTER *
COEFFICIENTS OF EACH SECOND-ORDER SECTION SCALED BY *
THE LARGEST L1 NORM OF THE IMPULSE RESPONSE OF EACH *
SUMMING NODE, THUS SUMMING NODE, THUS GUARANTEEING *
NO OVERFLOW. THE FILTER OUTPUT IS SCALED UP TO *
IMPLEMENT AN OVERALL GAIN OF ONE, AND THUS THERE IS *
A POSSIBILITY OF OVERFLOW THERE. THE UNSCALED *
REPRESENTATION OF THE OUTPUT (BEFORE THE *
MULTIPLICATION BYHO) MAY BE USED TO GUARANTEE NO *
OVERFLOW AT THE FILTER OUTPUT AS WELL. *

*
* THE NOTATION (Q15*2) INDICATES THAT THE COEFFICIENT *
* IN THE PROGRAM IS TWICE THE HEX EQUIVALENT OF THE *
* DECIMAL NUMBER. *
* *
* IN THIS PROGRAM, THE SECOND INDEX OF COEFFICIENTS *
* AND VARIABLES INDICATES THE SECTION THE COEFFICIENT *
* (VARIABLE) BELONGS T0,EG. A21 IS THE COEFFICIENT OF * .

* Z**-2 FOR THE FIRST STAGE. IN CHAPTER 8, THE *
* OPPOSITE CONVENTION IS USED,I.E., a 1 2 IS *
* THE COEFFICIENT OF Z**-2 IN THE TEXT. *
.
*
XN EQU 0
YN1 EQU 1
YO1 EQU 2
Y11 EQU 3
Y21 EQU 4
YN2 EQU 5
YO2 EQU 6
Y12 EQU 7
Y22 EQU 8
SCLFAC EQU 9
A l l EQU 1 0
A21 EQU 11
B01 EQU 1 2
B l l EQU 1 3
B21 EQU 1 4
A12 EQU 15
A22 EQU 1 6
B02 EQU 1 7
8 1 2 EQU 1 8
8 2 2 EQU 1 9
HO EQU 2 0
ONE EQU 2 1
*

AORG 0
RSLOC B INIT
*

DATA >5D19 SCLFAC = 0 . 3 6 3 6 6 3 6

*
DATA >6730 - A l l = 0 . 4 0 3 0 7 0 3
DATA >C449 -A21 = -0 .2332662
DATA > I 4 1 1 B01 = 0 . 0 7 8 3 8 4 3
DATA >208B B11 = 0 . 1 2 7 1 2 2 4
DATA > I 4 1 1 B21 = 0 . 0 7 8 3 8 4 3

DATA
DATA
DATA
DATA
DATA

*
DATA

*
WONE DATA
*
INIT LDPK

S O W
LARK
LARK
LACK

TABLER LARP
TBLR
SUB
BANZ

ARO , ONE
AR1,12
WONE
ARO
*-,MI1
ONE
TABLER

*
Z F I L T ZAC

SACL
SACL
SACL
SACL
SACL
SACL

*
I I R 2 D S I N

L T
MPY

L P S E C l PAC
LT
MPY
LTA
MPY
APAC
SACH
ZAC
MPY
LTD
MPY
LTD
MPY

*
LPSEC2 LTA

MPY
LT A
MPY
APAC
APAC
SACH
MPY
PAC
LTD
MPY
APAC
LTD
MPY
APAC
APAC
SACH

LT
MPY
PAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
AP AC
APAC
APAC
AP AC

YO1
Y 1 1
Y 2 1
YO2
Y 1 2
Y 2 2

XN, PA0
XN
SCLFAC

Y 1 1
A 1 1
Y2 1
A2 1

YO1

B 2 1
Y 1 1
B 1 1
YO1
B 0 1

Y 1 2
A 1 2
Y 2 2
A2 2

YO2
B 2 2

Y 1 2
B 1 2

YO2
B 0 2

YN2

YN2
HO

MAKE A22 Q15*2
Q 1 5
Q 1 5

MAKE B 2 2 Q15*2

MAKE B 1 2 Q15*2

MAKE B 0 2 Q15*2

SCALE YN BACK UP -- NOTE THAT
OVERFLOW (SATURATION) MAY OCCUR
HERE I F OUTPUT MAGNITUDE EXCEEDS 1

APAC
APAC
APAC
SACH YN2 Q15

OUT YN2,PAl
B IIR2DS

END

Index

Alternation theorem, 87, 88
Analog filters, 159
Analog-tedigital (A/D) conversion, 134
Analog-tedigital (AID) conversion noise, 136,

137
Approximation problem:

FIR filters, 10, 11, 34
IIR filters, 10, 11, 160

Bandpass filters (FIR), 101-105
Bandpass transformation, 202
Bilinear transformation, 209, 322
Butterworth filters, 106, 107, 162, 317

Cascade form, 238, 325
Chebyshev approximation, 83
C hebyshev filters:

IIR, 159, 171,179, 317
type 2 FIR, 108

Chebyshev FIR design:
complex approximation, 120- 129
linear phase approximation, 87, 88
Remes exchange algorithm, 89-94

Chebyshev IIR design, 177
Chebyshev rational function, 190
Coefficient quantization:

FIR, 142
IIR, 234-236,243,244

Continuous systems, relation to discrete
systems, 206

Coupled form, 253

D F T (Discrete Fourier Transform), 20
Differentiators, 286
Direct form:

nonrecursive, 140
recursive, 236, 237

Discrete-time systems, 4

Elliptic filters, 184

Filter comparisons, 269-272
Finite impulse response (FIR), 4, 15

design programs, 275-3 17
design relations, 103
structures, 140-142

F IR and IIR filters compared, 269-272
Fixed point arithmetic, 133
Frequency response, 7, 8, 26, 155
Frequency sampling design, 35, 275, 327
Frequency transformations 201, 206,

323
Frequency warping, 210

Gibbs phenomenon, 59
Group delay, 8, 124, 125

Hamming window, 73
Hanning window, 73
Hilbert transformer, 24

342 Index

IIR filter design techniques, 159, 225
magnitudesquared function design, 16 1
minimum mean squared error design, 221,

224
time domain design, 226

IIR filters, 153
Impulse invariant transformation, 206
Impulse response, 5, 6
Infmite impulse response (IIR) filters, 153

Kaiser window, 73

Limit cycle oscillations, 249-254
Linear phase conditions, 20-26, 85, 86
Linear programming:

complex FIR design, 120
design of IIR filters, 225

Lowpass filters, 95-102, 161

Magnitude-squared design, 1 12-1 20
Magnitude-squared response, 1 12
Maximally flat, 106, 162
Maximal ripple filters, 105
Minimum phase, 1 1 1, 1 12
Multiple band filters, 103

Nonrecursive realization, 140

Overflow oscillations, 249-253

ParksMcClellan algorithm, 89, 94-106
Partial fraction expansion, 207, 239
Phase delay, 8
Pole-zero plot, 28, 156
Prony's method, 226

Rectangular window, 7 1
Remez exchange algorithm, 89-94
Rounding, 136
Roundoff noise, 137

Scaling:
nonrecursive, 144, 145
recursive, 244-246

Squared- magnitude, see Magnitude-squared
design

Stability, 156
Structures:

nonrecursive, 140- 142
recursive, 236-242

Time-domain IIR design methods, 226
Transfer function, 8
Transition bands, 63-67, 70, 86
Transpose structure, 141, 237
Triangular window, 7 1
Truncation, 136
Two's-complement, 134, 135

Parallel form, 239
Window design, 71, 283
Windows, 74

