
25 Hartwell Avenue, Lexington, MA 02421

Tel. 781-541-1600 Fax. 781-541-1601

EC1000 Controller
Advanced Laser Positioning & Control
for Laser Steering Systems

www.cambridgetechnology.com

TM

OEM Integrators Manual
Revision 1.5.1

Page 2 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Page 3 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

CAMBRIDGE TECHNOLOGY, INC.

25 Hartwell Avenue

Lexington, MA 02421-3102

U.S.A.

TEL.781-541-1600

FAX.781-541-1601

EC1000 is a trademark of Cambridge Technology, Inc.

Lit. No. P0900-0120 Rev. 1.5.1 8 Feb 2008

Printed in the U.S.A. © 2006-2008 Cambridge Technology, Inc. All rights reserved.

Page 4 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Page 5 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

EC1000 Controller
Advanced Laser Positioning & Control

Installation and Use Manual

1 Introduction ...11

1.1 General Notes..11

1.2 Using this manual..11

1.2.1 Purpose..11

1.2.2 Scope...11

1.2.3 Revision History ...11

1.3 Obtaining Technical Assistance ..12

2 Safety...13

2.1 Safety labels and symbols ...13

2.2 General safety guidelines ..13

2.3 SAFETY/CAUTIONS ..13

3 EC1000 Product Introduction ..15

3.1 EC1000 System Description ...15

3.2 EC1000 Features ...15

3.2.1 Hardware features ...15

3.2.2 Software features ..16

3.3 Technical Specifications ...17

4 Installation Requirements/Precautions ...19

4.1 Storage and Installation Environment ...19

4.2 Jumper Setting for Non-standard Galvo Systems ...19

4.3 EC1000 Board ...20

4.4 EC1000 I/O Module ..21

4.4.1 I/O Module Block Diagram ..21

4.4.2 I/O Module Connectors, Rev C-E...22

4.4.3 I/O Module Connectors, Rev F...23

4.5 EC1000 Typical Embedded Installation ...24

4.6 EC1000 I/O Module Connectivity Summary Reference.....................................25

4.7 EC1000 I/O Module User Connector Part Number Reference26

4.8 EC1000 to I/O Module Connector Part Number Reference27

4.9 EC1000 Servo Controller Connector Part Number Reference............................27

4.10 EC1000 Signal Conditioning ..28

4.11 EC1000 and EC1000 I/O Module Connectors..31

4.11.1 Ethernet/USB Connectors...31

4.11.2 USER I/O A Connector ..32

4.11.3 USER I/O B Connector...34

4.11.4 Low Speed Serial Connectors...35

4.11.5 Laser Analog Connector ...36

4.11.6 XYZ Analog Signal Descriptions ...37

4.11.7 X & Y-Axis Connectors ...37

4.11.8 Z-Axis Connectors..37

Table of Contents

Page 6 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

4.11.9 Power Connectors ...39

4.12 XY2-100 Protocol Interface ..40

4.12.1 XY2-100 Interface Timing ...40

4.13 Stand-alone Operation...40

5 Principle Of Operation..41

5.1 Hardware Overview ..41

5.2 Software Overview..43

5.3 Scanning Job Fundamentals ..43

5.3.1 Coordinate system conventions ..44

5.3.2 Marks and Jumps ..44

Basic Action Commands ..45

5.3.3 Micro-vectoring ..45

5.3.4 Delays ...45

5.4 Image Field Correction ...49

5.4.1 X-Y Mirror Induced Distortion...49

5.4.2 F-theta Objective Induced Distortion ...49

5.4.3 Composite Distortion and Correction Methodology ..50

5.5 Laser Timing Control ..51

5.5.1 Software Control of Laser Timing..53

5.5.2 Laser Timing Emulation ...54

CO2 Laser Timing..55

Nd:YAG Emulation Mode-1 Timing ...56

Nd:YAG Emulation Mode-2 Timing ...57

Nd:YAG Emulation Mode-3 Timing ...58

Nd:YAG Emulation Mode-4 Timing ...59

Nd:YAG Emulation Mode-5 Timing ...60

Fiber Laser Timing ...61

6 Application Programming Interface..63

6.1 API Implementation and Installation ..63

6.2 Broadcast API ...63

6.2.1 Attach Broadcast ..63

6.2.2 Detach Broadcast ..64

6.2.3 Get Lec Server Count ...64

6.2.4 Get Lec Server List ...64

6.2.5 Get Broadcast Data ...65

Broadcast Data Definitions ..65

System Information ..66

Status Information ..67

6.3 Session API ...68

6.3.1 Session Login..68

6.3.2 Session Logout..68

6.3.3 Session Request Fixed Data..69

Session Fixed Data Definitions ..69

Administration Configuration ..70

Table of Contents

Page 7 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

Controller Configuration ..71

Laser Configuration..73

Lens Configuration...74

Correction Tables ...75

User Configuration ...75

Performance Adjustments ..76

6.3.4 Send Fixed Data..77

6.3.5 Send Streaming Job Data..78

Streaming Job Data Defintion ..78

Job Command Tags ..78

Job Parameter Identifiers..80

6.3.6 Save Job Data..83

6.3.7 Manage Job Data ..83

6.3.8 Request Job Name List ...84

6.3.9 Send Priority Data...85

Priority Data Definition..85

6.3.10 Session On Connect Events ..86

6.3.11 Session On Data Events ..86

6.3.12 Session On Message Events ...87

6.4 Broadcast and Session API Error Codes ...88

7 Remote Control Protocol ..89

7.1 TCP/IP Interface..89

7.2 Protocol Specification ...89

Abort...89

CloseCOMPort ...89

COMWriteLine ..90

ExecuteJobContinuous ...90

ExecuteJobOnce ...90

GetAdminPIN...90

GetDHCPMode ..90

GetFlashJobFileList..91

GetHostControlStatus...91

GetHostInControl ...91

GetJobStatus ...91

GetLocalGateway...91

GetLocalIP..91

GetNodeFriendlyName ..92

GetRemoteIP ..92

GetSubnetMask ..92

GetUSBJobFileList ..92

GetUserPIN ..92

HardwareReset ...93

LoadFlashJob..93

LoadHardwareDefaults ..93

LoadUSBJob ..93

Table of Contents

Page 8 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

OpenCOMPort..93

ReleaseHostControl..94

SetAdminPIN ...94

SetDHCPMode...94

SetLocalGateway..94

SetLocalIP ..94

SetNodeFriendlyName ...95

SetSubnetMask...95

TakeHostControl ..95

7.3 Remote Control Error Codes...96

Appendix A EC000-IO Schematic ...97

Page 9 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

Page 10 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Page 11 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

1 Introduction

1.1 General Notes

Cambridge Technologies reserves the right to make changes to the product covered in this manual to improve
performance, reliability or manufacturability.

Although every effort has been made to ensure accuracy of the information contained in this manual, Cambridge
Technology assumes no responsibility for inadvertent errors. Contents of the manual are subject to change without
notice.

1.2 Using this manual

1.2.1 Purpose

This manual provides the following information for the EC1000 system:

•product description, installation, operation & troubleshooting

1.2.2 Scope

This manual covers the EC1000 Control Board and the EC1000 I/O Board only.

1.2.3 Revision History

REVISION DATE Changes from previous revision

0.1 19 December 2005 Second review draft

0.2 16 February 2006 Third review draft

0.3 06 March 2006 Major update in intro sections; software API update to include MOTF functions, etc.

0.4 15 March 2006 Major update with revamped laser timing and reordered API presentation

0.5 25 April 2006
Corrected coordinate diagram; refined XML for laser config and controller config; reorganized
sections; updated table of contents; updated all laser timing diagrams; fixed various connector
diagrams and tables

1.0 27 April 2006 Initial Release

1.1 29 June 2006

Added sections on API installation and usage; corrected some inconsistancies in fixed data XML
tables; added XML examples for configuring the various laser modes; added timing diagram for
fiber lasers; fixed EC1000-IO module connectorization diagram errors; added StartJob and EndJob
job tags.

1.1a 5 July 2006 Fixed connector ID for EC1000 power connector on page 86: was J6, is now J20

1.2 28 November 2006

Changed API function names to use Microsoft interface naming conventions

Added argument to Broadcast API to permit specifying a particular network adaptor

Added interface definition for OnConnect events

Changed syntax of PriorityMessage XML

Updated AdminConfig file to include Broadcast IP information and Head SN information

Fixed error in Figure 19 where pin 13 of J13 was erroneously called pin 14

Added notation about Rev Cx of the I/O Module to Figure 5

1.3 21 May 2007

Updated CTI address and contact information

Reorganized document sections to present installation sections first

Fixed signal naming inconsistancies on several connector diagrams

Fixed signal conditioning diagrams to correctly illustrate digital input handling

Fixed XML syntax of MotfRestJump

Fixed units of MarkDelay and PolyDelay

Changed syntax of Abort priority message

Hardlock licensing of the API has been removed

Added section on pendant control and remote control protocol

Changed syntax of certian sections of the AdminConfig file

Updated API installer section

Page 12 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

1.3 Obtaining Technical Assistance

If you encounter a problem:

1. Review all of the information contained in this manual.

2. Consult your own internal people about the issue.

3. If you need further assistance, call Cambridge Technology, Monday through Friday, 9 A.M. until 4:30 P.M.
(Eastern Standard Time) at 781-541-1600.

1.4 21 November 2007

SysInfoData expanded to include object library version info and USB storage info

SysStatusData expanded to include the current state of the digital I/O signals

AdminData is now accessible via the request/sendFixedData methods

Hexidecimal data format use is more explicitly specified

Added LaserConfig parameters to enable IPG Laser DLATCH and GUIDELASER support

Correction table XML data can now be sent using the sendStreamData method

The Draw job command was added to facilitate rapid re-drawing of preview images.

The LaserOff job command was removed since it was a duplicate of the LaserSignalOff command

New session methods were added to support job management

Job managment methods were expanded to include the specification of storage location and name

Clarified behavior of the system under exception conditions

Restart was added to the Priority Data Definitions

Exception reporting via message events was clarified

The COMWriteLine remote command was expanded to include waiting for a device response

The maximum value for various timeout values specifed in the job commands have been corrected

1.5 18 January 2008

Added support for Wobble

Fixed units on some of the LaserConfigData timing parameters

Clarified behavior of the system on an interlock trip

Minimum stepPeriod for marks and jumps reduced to 10usec

Added support for four correction tables enabling fully functional dual-headed system operation

WaitForIO now supports indefinite waiting as a special case

Added job name argument to the remote commands ExecuteJobOnce and ExecuteJobContinuous

Clarified synchronization requirements for ExecuteJobOnce and ExecuteJobContinuous

LaserPower now only affects the 8-bit digital power port. WriteAnalog is used to affect the analog
power port.

1.5.1 7 February 2008
Corrected syntax of WobbleEnable command

Corrected comments about the LaserPower command affecting the analog output

Page 13 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

2 Safety
Please read all operating instructions completely before installing and using the EC1000 boards.

2.1 Safety labels and symbols

The following safety labels and symbols are used throughout the system documentation:

2.2 General safety guidelines

DANGER

Laser Radiation

Do not stare directly into a laser beam.

Follow all system laser safety requirements during installation and operation.

DANGER

Laser Radiation

Cambridge Technologies recommends the use of a shutter to prevent

unwarranted emission of laser radiation, where practical.

2.3 SAFETY/CAUTIONS

WARNING!

Use of controls, adjustments, or procedures other than those specified in this

manual without consulting a competent safety professional may result in component

damage, and/or exposure to potential hazards. Always follow established industrial

safety practices when operating equipment.

CAUTION! !

ESD HAZARD!
Use appropriate anti-static wrist straps and/or work area equipment
to prevent damage to the board electronic components.

CAUTION! !

Always check your application program BEFORE running it. Errors can cause system damage.

CAUTION! !

Electronic boards are fragile! Handle and store with care.
Protect electronic components from dust, humidity, electromagnetic fields, static electricity, chemicals, and mechanical stress.

Label Meaning

DANGER
Serious bodily injury or death.

WARNING!
Potential for serious bodily injury.

CAUTION! ! Potential for property damage and/or minor bodily injury.

SHOCK HAZARD

Electrical voltage present.

Take appropriate measures to protect yourself from electrical shock.

LASER HAZARD.

Page 14 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Page 15 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

3 EC1000 Product Introduction

3.1 EC1000 System Description

The EC1000 is a self-contained controller that provides advanced hardware and software control technology to drive
laser scanning systems. The EC1000 control board is specifically designed for remote embedding and control of a scan
head or laser system, and is capable of controlling up to three motion axes with concurrent laser timing control. It
also provides integrated synchronization I/O for connection to factory automation equipment.

Connection to a PC for job download and administrative control is made via Ethernet® network using industry
standard TCP/IP protocols. In addition to Ethernet connectivity, the EC1000 provides external USB connections to
support job file distribution via industry standard USB FLASH disks. RS232 Serial I/O is also provided for a pendant
style user interface, serial laser control, and diagnostic access.

An optional I/O board provides an off-the-shelf solution for communication and power connectivity, or custom
cabling configurations as desired. In a typical installation, the EC1000 is an “embedded” device, installed remotely
in a laser scanning system. Positioning vectors are streamed from a networked PC to the remote EC1000 board which
processes these vectors in real-time and sends them to the laser steering galvo servos as analog or digital signals.
Alternatively, the vector stream can originate from a locally stored file in on-board or external USB based FLASH
memory.

There is no requirement to dedicate a full-time host PC to a laser scanning system, as the EC1000 board can process
vectors while the PC is used for other purposes. In fact, one PC can support multiple EC1000 based scanning systems
with no loss in performance. This is due in part to the large amount of buffer memory available on the controller, the
use of a separate supervisory processor on the controller to handle network communication processing, and the
complete off-loading of time critical tasks to a second real-time processor on the EC1000.

3.2 EC1000 Features

3.2.1 Hardware features

•stand-alone design targeted at “embedded” installation in scanning equipment

•dual processor architecture with integrated 10/100BaseT Ethernet communication capability

•real-time processing engine for precise, synchronized scanner movement and laser control

•fully programmable laser control signals for commonly used lasers

•direct analog or digital interface to XY or XYZ scan head galvanometer servo controllers

•16-bit galvanometer position command resolution

•integrated lens distortion correction table support

•integrated slave head control via XY2-100 standard protocol

•software selectable polarity and timing of all laser control signals

•two auxiliary analog output channels (12-bit) 0-10V for control of laser current or pulse intensity

•one 8-bit optically isolated digital output port for laser power control

•optically isolated digital inputs and outputs (four each) for external equipment synchronization

•four optically isolated interlock inputs

•two USB host ports for portable FLASH disk access and other peripheral I/O

•16Mbytes of on-board FLASH for local job and parameter storage

•one RS232 serial pendant port

•one RS232 serial laser control port

•two RS232 diagnostic control ports

Page 16 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

3.2.2 Software features

The EC1000 is designed to fit into a client-server architecture. The module implements all required server code
functions including identification broadcast, data streaming, command and control communications, and real-time
positioning operations. Host to module communications uses TCP/IP as a transport mechanism over Ethernet.

To simplify integration with third-party application software, a Windows .NET/COM Application Programming
Interface (API) to the functions of the module is provided. The API takes care of all of the network connection
requirements and abstracts many of the discrete functions of the module into higher level vector oriented instructions.

Key features supported by the software are:

•compatibility with Windows® 2000, XP, and ME operating systems

•administrative management of the EC1000 including scanning head configuration data

•automatic device recognition for any number of network attached controllers

•COM and .NET Assembly access to all scanning functions using XML for parameter and data passing

•support for lens correction files (65 x 65 data points) to correct for field distortions

•designed to be easily integrated with custom or standard commercial marking software applications

Figure 1 EC1000 Control Board typical installation

Ethernet
LAN

PC

Client

.

.

.

Scanning

Node n

USB Expansion

ID Broadcasts

Config data

Job data

Status data

ID Broadcasts

Config data

Job data

Status data

Scanning
Node #1

Power EC1000
Controller

I/O
Module

Laser
Galvos &
Mirrors

Galvo
Servos

DC

Scanning Head

Lens

Z

Axis

Laser

control

Automation

interface

Data

Data

Analog

or Digital
X & YZ

Scanning

Node #2

Power EC1000

Controller

I/O

Module

Laser
Galvos &

Mirrors

Galvo

Servos

DC

Scanning Head

Lens

Z
Axis

Laser

control

Automation
interface

Data

Data

Analog
or Digital

X & YZ

Page 17 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

3.3 Technical Specifications
Category Feature Specification

Galvo control

Number of axes 3 (X, Y, Z)

Position command resolution 16-bit (-32768 to +32767)

Position command output

Analog

• Differential output with software programmable range:
+/- 2.5 volts
+/- 5.0 volts
+/- 10 volts
• Optional jumper configuration provides additional range capability of:
+/- 1.5 volts
+/- 3.0 volts
+/- 6.0 volts

Single ended operation possible using an analog ground reference and one of the differential
output signals.

Signals present a 20 Ohm source impedence.

Digital

• Full-time SPI serial digital output for the X&Y axes, 3.3V TTL compatible. Signal values
represented at the analog outputs are reflected on the SPI data channels.

• Factory jumper configurable SPI serial digital output for the Z axis, 3.3V TTL

compatible. Signals are presented at the Z axis connector in lieu of the analog signals.
• XY2-100 compatible protocol for X, Y and Z axes including status read back. Signal
values represented at the analog outputs are reflected on the XY2-100 data channels.

Auxiliary signals
Motor enable ouputs, per axis, 5 volt TTL compatible, programmable polarity

Motor status inputs, per axis, 5 volt TTL compatible, programmable polarity

Laser control

Number of signals

6, software programmable polarity and timing

• LASERENABLE: asserted a programmable time prior to a sequence of mark
instructions and de-asserted after a programmable period of laser inactivity

• LASERON1: asserted when the laser is active
• LASERPTR: laser pointer control signal
• LASERFPK: programmable laser first pulse killer, or suppression signal

• LASERMOD1: programmable laser modulation or Q-switch pulse stream
• LASERMOD2: second programmable laser modulation or Q-switch pulse stream, 180
degrees phase shifted from LASERMOD1

Electrical output 5 volt TTL compatible

Time base resolution 20ns

Automation interfaces

User inputs
4, optically isolated, programmable polarity and level or edge sensitivity

A marking job may contain an instruction that pauses execution until one of these signal is
asserted by external equipment

User outputs
4, optically isolated, programmable polarity

A marking job instruction may specify the state of any of these signals

System status

3 signals, optically isolated

• BUSY: asserted then a BeginJob instruction is executed and de-asserted when an

EndJob instruction is executed
• MARKINPRG: asserted when marking is in progress
• ERROR: asserted if an error is detected

System synchronization

1 signal, optically isolated, programmable polarity and level or edge sensitivity

• STARTMARK: a marking job may contain an instruction that pauses execution until
this signal is asserted by external equipment

Conveyor tracking

RS422 digital quadrature inputs (A & B phases + Index)

Used for tracking objects in motion and automatically compensating for that motion while
marking. Also known as marking-on-the-fly.

Compensation can be software configured to be applied to either the X or Y axis

Safety Interlock protection
4, optically isolated, programmable polarity

Used to provide hardware level protection from accidental exposure to laser radiation

Communication

Ethernet 10/100 BaseT compatible

Serial RS232

1 full modem interface capable, typically reserved for pendant style user interface access

1 three-wire (Tx + Rx + Gnd) port for diagnostic access to main processor

1 three-wire port for diagnostic access to marking engine processor

1 three-wire port for serial communication to a laser under job control

Peripherals USB 2 USB host ports for access to external Flash memory disks or other peripherals

Electrical DC Power
+/- 15-28 volts @ 150ma

+5 volts @ 750ma

Mechanical
Length x Width 5.0” x 4.0”

Mounting holes 0.125” diameter located 0.156” from each corner

Page 18 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Page 19 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

4 Installation Requirements/Precautions

4.1 Storage and Installation Environment

CAUTION! !

ESD HAZARD!
Use appropriate anti-static wrist straps and/or work area equipment
to prevent damage to the board electronic components.

Protect the EC1000 boards from mechanical stress, humidity, dust, and thermal damage. Storage
temperature is -20° C to + 60° C. Operating temperature is 15 to 40° C.

The EC1000 boards are designed for installation in or near a marking head. Remote connection/programming and
download control is achieved via an Ethernet connection.

4.2 Jumper Setting for Non-standard Galvo Systems

A jumper can be installed on J30-32 to change the laser galvanometer analog command voltage from the standard
(±10V, or ±5V, or ±2.5V) to ±6V, ±3V, and ±1.5V, respectively. J30 affects the X axis, J31 the Y axis, and J32 the Z axis.

Note: J30, J31, and J32 are the ONLY user jumper settings on the EC1000 board.

Figure 2 Voltage jumper setting for non-standard galvo systems.

2

1

Jumper installed = ±6V, ±3V, ±1.5VNo Jumper = ±10V, ±5V, or ±2.5V

2

1

Page 20 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

4.3 EC1000 Board

Figure 3 EC1000 Main Board Top View

4.0”

5.0”

+

0.125” dia, 4 plcs
0.256”

Output voltage

range selection

jumpers

Page 21 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

4.4 EC1000 I/O Module

Because the EC1000 is a compact completely integrated controller system supporting many interface signals, it is
necessary to use high-density connectors to provide access to those signals. An EC1000 I/O module provides an off-
the-shelf I/O connection solution. The I/O module is designed to expose most connectors that the user will use on
the top side, and all the connectors that need to connect to the main board on the back side. There are two power
connectors on the back side that are intended to provide power to galvo servo controllers located inside a marker
head.

4.4.1 I/O Module Block Diagram

Figure 4 I/O Module Block Diagram

Outside

connectors

+/- 15-28V

+5V

Regulator

+/- 15-28V, +5V

+15-28V

+5V

+/- 15-28V

Inside

connectors

To EC1000

+/- 15-28V

+/- 15-28V

To X Galvo

To Y Galvo

3mm x

16
Laser control

3mm x

20
User I/O

2

mm

x

40

Laser digital control

User I/O

3mm x

8
Digital quadrature Digital quadrature (MOTF)

To EC1000

To EC1000

Controller I/O “A”

Controller I/O “B”

Ethernet
RJ-45 EthernetEthernet

To EC1000

USB 0-1 To EC1000

USB

Host
USB 0USB

USB 1
USB

Host
USB

Serial I/O

DB-9 Console (COM1)Pendant

To EC1000

2.5

mm

x 6
T1/T2 DAC output From EC1000Laser analog DAC output

3mm x

12
Laser data Laser data

Interlocks
3mm x

10
Interlocks

System status
3mm x

8
System status

3mm x

4

3mm x

6

Laser serial

Diag serial

Laser serial

Diag serial

Page 22 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

4.4.2 I/O Module Connectors, Rev C-E

Figure 5 I/O Module Rev C-E Top View

NOTE: Rev Cx of the I/O module has connectors J11 and J15 positionally transposed from what is shown in
Figure 5.

Figure 6 I/O Module Rev C-E Bottom View

Page 23 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

4.4.3 I/O Module Connectors, Rev F

Figure 7 I/O Module Rev F Top View

.

Figure 8 I/O Module Rev F Bottom View

Page 24 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

4.5 EC1000 Typical Embedded Installation

The EC1000 and EC1000-IO module were designed to be embedded in laser scanning head or subassembly. The
EC1000-IO module fans-out the highly functional I/O of the EC1000 to individual connecters that are more
convenient to attach to other equipment such as lasers,encoders, and automation devices.

The EC1000-IO module presents an “inside” interface for attachment to the EC1000 and other devices inside the
“head”, and an “outside” interface for attachment to other devices. Typically, other “inside” connections are the laser
galvanometer servo controllers that require both DC power and command signal cables. In these situations illustrated
by the example diagram in Figure 9, power is provided to the EC1000 through the “outside” power connector on the
EC1000-IO module, and is passed through to the EC100 main module and servo boards through connectors on the
“inside”. Note that the EC1000-IO module generates the +5 Volts required by the EC1000 module from the +Power
input.

Figure 9 Typical EC1000 Installation

Customer supplied

input power cable

673 Servo

0

Customer supplied

Ethernet cable

6016-1P-xxx

power cable

6016-1A-xxx

command input cable

0

D07047-006 power cable

(part of EC1000-CBLKIT)

X-Y Galvos

Ribbon cables

(part of EC1000-CBLKIT)

Customer supplied I/O

cables as needed

EC1000-IO Board

EC1000 Connectivity Diagram

EC1000-IO external side

EC1000-IO internal side

EC1000 main module

Page 25 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

4.6 EC1000 I/O Module Connectivity Summary Reference

The EC1000 I/O Module is provided as a total solution, multi-function board that can be used on both new and old
laser heads to provide convenient interface connection. Custom, specialized, and de-populated board variations can
be made available for specific uses.

Refer to individual pinout drawings for detailed pinout and signal information.

Table 1: EC1000 to EC1000 I/O Module Connectivity Summary Reference

EC1000 Board

Connector
Purpose

EC1000

I/O Board

Backside Connector

EC1000

I/O Board

User Connector

Purpose

J8 Ethernet & USB J103

J3 Ethernet

J4 USB Port 0

J14 USB Port 1

J12 Serial I/O J102

J2 Pendant Serial

J11 Laser Serial Control

J15 Diagnostics (Debug)

J14 X Servo N/A - Galvo command connected directly to EC1000

J15 Y Servo N/A - Galvo command connected directly to EC1000

J16 Z Servo J110 J10 Laser Z Axis Control

J17 Digital I/O J105

J5 Status

J8 Laser Control

J12 Mark on the fly

J13 XY2-100

J18 Digital I/O J106

J5 Status

J6 User Digital I/O

J7 Interlocks

J9 Laser Digital Data

J19 Laser Analog Power J119 J8 Laser Control

J20 Input Power J101

J1 Input Power

J16 (back side connector) X Servo Power

J17 (back side connector) Y Servo Power

Page 26 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

4.7 EC1000 I/O Module User Connector Part Number Reference

EC1000 I/O Board

User Connector
Purpose Style Mfg.

Board connector

Part #

 Mating

Connector

Part #

Connector

Pins

J3 Ethernet RJ45 SMP A3002-341-010-101-GY CAT-5 Ethernet Cable

J4 USB Port 0 USB-A REGAL 90S-A-S USB Type A Device

J14 USB Port 1 USB-A REGAL 90S-A-S USB Type A Device

J2 Pendant RS232 Serial DB-9M AMP 747871-8 DB9 RS-232 DCE

J101 EC1000 Power 3 mm Microfit, 4 pin Molex 43045-0414 43025-0400

43030-0009
(20-24GA)

43030-0011

(26-30GA)

J11 Laser RS232 Serial Control 3 mm Microfit, 4 pin Molex 43045-0414 43025-0400

J15 Diagnostic RS232 Serial 3 mm Microfit, 6 pin Molex 43045-0614 43025-0600

J10 Z Axis Output 3 mm Microfit, 6 pin Molex 43045-0614 43025-0600

J8 Laser Digital Control 3 mm Microfit, 16 pin Molex 43045-1614 43025-1600

J12 Mark on the fly 3 mm Microfit, 8 pin Molex 43045-0814 43025-0800

J13 XY2-100 3 mm Microfit, 14 pin Molex 43045-1414 43025-1400

J5 System Status 3 mm Microfit, 8 pin Molex 43045-0814 43025-0800

J6 User Digital I/O 3 mm Microfit, 20 pin Molex 43045-2014 43025-2000

J7 Interlocks 3 mm Microfit, 10 pin Molex 43045-1014 43025-1000

J9 Laser Digital Data 3 mm Microfit, 12 pin Molex 43045-1214 43025-1200

J1 Input Power MiniFit-Jr, 3 pin Molex 39-30-1039 39-01-4031

39-00-0182J16 (back side) X Servo Power MiniFit-Jr, 4 pin Molex 39-29-3046 39-01-2045

J17 (back side) Y Servo Power MiniFit-Jr, 4 pin Molex 39-29-3046 39-01-2045

J110 (back side) Z Axis Control from EC1000 2.5MM SPOX Molex 22-03-5065 50-37-5063
08-70-1040

J119 (back side) Laser Analog from EC1000 2.5MM SPOX Molex 22-03-5065 50-37-5063

Page 27 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

4.8 EC1000 to I/O Module Connector Part Number Reference

4.9 EC1000 Servo Controller Connector Part Number Reference

EC1000

Board

Connector

Purpose

EC1000

I/O Board

Backside

Connector

Style Mfg. Board Connector Part #
Mating Cable or

Connector/Pins

J8
Ethernet & USB 0.050 X 2 X 13 Samtec

FTSH-113-01-LM-D-K
FFSD-13-D-06.00-01-N

J103 FTSH-113-01-LM-DV-K

J12
Serial I/O 0.050 X 2 X 10 Samtec

FTSH-110-01-LM-D-K
FFSD-10-D-06.00-01-N

J102 FTSH-110-01-LM-DV-K

J17
User I/O “A” 2mm X 2 X 20 Samtec

EHT-120-01-S-D
TCSD-20-D-03.00-01-N

J105 STMM-120-02-SM-D

 J18
User I/O “B” 2mm X 2 X 20 Samtec

EHT-120-01-S-D
TCSD-20-D-02.00-01-N

J106 STMM-120-02-SM-D

J16 Z Servo J110 2.5mm X 1 X 6 Molex 22-03-5065 50-37-5063/08-70-1040

J19 Laser Analog J119 2.5mm X 1 X 6 Molex 22-03-5065 50-37-5063/08-70-1040

J20 DC Input Power J101 3 mm Microfit X 4 Molex 43045-0414 43025-0400/43030

EC1000

Board

Connector

Purpose Style Mfg. Board Connector Part #
Mating Cable or

Connector/Pins

J14, J15, J16 X, Y, Z Servo 2.5mm X 1 X 6 Molex 22-03-5065 50-37-5063/08-70-1040

J19 Laser Analog Out 2.5mm X 1 X 6 Molex 22-03-5065 50-37-5063/08-70-1040

Page 28 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

4.10EC1000 Signal Conditioning

Most control connections are optically-isolated on the EC1000 main module. On the EC1000-IO module some signal
sets are further pre-conditioned to simplify system wiring when optical ioslation is not important. To handle these
cases the EC1000-IO module connectors are wired so that simple connector jumpers can be used to connect EC1000
system power and ground for satisfyng the iosolator drive requirements. The following figures illustrate the input
and output optical isolation used with the various signal groups.

Figure 10 EC1000 System Control and Status Optical Isolation

Figure 11 EC1000 Laser Control Signal Conditioning

BUSY

Vcc +5V

User V+

User Gnd

EC1000 I/O

Module

User

Module

EC1000 Main

Module

ERROR

MARKINPROG

10K

From EC1000 Logic
To User Logic

EC1000 Gnd

STARTMRK

5K

User STARTMRK

J5

STATUSVPOS

LASERENABLE

+5V

User Vcc

User Gnd

EC1000 I/O

Module

User

Module

EC1000 Main

Module

LASERFPK

From EC1000 Logic

To User Logic

EC1000 Gnd

ENB

ENB

LASERON1, LASERON2,

LASERMOD1, LASERMOD2

Enable Laser Signals

Pullup/Pul ldown as appropriate to

render laser safe on EC1000
powerup or cable disconnect

J8

Page 29 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

Figure 12 EC1000 User Inputs Optical Isolation

Figure 13 EC1000 User Outputs Optical Isolation

Vcc

+5V

User V+

User Gnd

EC1000 I/O

Module

User

Module

EC1000 Main

Module

USERIN(1..4)

5K

To EC1000 Logic
From User Logic

EC1000 Gnd

J6

USEROUT1

Vcc +5V

User V+

User Gnd

EC1000 I/O

Module

User

Module

EC1000 Main

Module

10K

USEROUT4

From EC1000 Logic
To User Logic

EC1000 Gnd

EC1000 User Digital Output

Optical Isolation

Page 30 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Figure 14 EC1000 Laser Digital Output Optical Isolation

Figure 15 EC1000 System Interlock Optical Isolation

LASERDIGITAL0

Vcc +5V

User V+

User Gnd

EC1000 I/O

Module

User

Module

EC1000 Main

Module

LASERDIGITAL7

10K
To User Logic

From EC1000 Logic

EC1000 Gnd

J9

DATAVPOS

Vcc

+5V

Use r V+

Use r G nd

EC1000 I/O

Module

User

Module

EC1000 Main

Module

INT ERLOCK (1 ..4)

5K

To EC1000 Logic

From User Logic

EC1000 Gnd

J7

Page 31 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

4.11EC1000 and EC1000 I/O Module Connectors

This section contains pinout drawings and connectivity details for EC1000 Board connectors to the EC1000 I/O
Module.

4.11.1Ethernet/USB Connectors

Connector J8 on the EC1000 board provides access to Ethernet and USB connectivity. The figure below details pinouts
and relevant pinouts and signal names for the EC1000 I/O Module.

Figure 16 EC1000 Ethernet/USB Connector Pinouts and Connectivity to EC1000 I/O Module

J4 USB Port 0

J14 USB Port 1

1

3

5

7

9

11

13

15

17

19

21

23

25

2

4

6

8

10

12

14

16

18

20

22

24

26

Transmit Data +

Transmit Data -

J8

ETH_TD_POS

J3: RJ-45 Ethernet Connector

EC1000 I/O Module
EC1000 Board

Transmit Center-tap

Chassis ground

Receive Data +

Receive Data -

Receive Center-tap

Chassis ground

LED 2.5V voltage source

GND

100Base-T Connection LED

GND

Link LED

GND

Transmit LED

GND

USB0_5V

USB1_5V

GND

GND

USB0_NEG

USB0_POS

GND

GND

USB1_NEG

USB1_POS

Pin(s) Signal Name

3

ETH_TD_NEG2

4

5

ETH_RD_NEG6

7

ETH_LINK_LED9

ETH_XMT_LED11

ETH_2.5V12

CHASSIS GND13

CHASSIS GND

ETH_RD_POS

8

ETH_2.5V10

1

14

USB0_5V

3

USB0_NEG2

USB0_POS

1

GND4

USB1_5V

3

USB1_NEG2

USB1_POS

1

GND

J3

J4 USB Port 0

J14 USB Port 1

1 2

25 26

4

Page 32 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

4.11.2USER I/O A Connector

Connector J18 on the EC1000 board provides access to User I/O. The figures below details pinouts and relevant
pinouts and signal names for the EC1000 I/O Module connectors. All output signals are optically isolated signals.

Figure 17 EC1000 J18 User I/O Pinouts and Connectivity to EC1000 I/O Module connectors, 1 of 2

The 8-bit laser power data connectors are intended to provide digital representation of the laser power information.

J5 System Status Control

MRKINPRG_POS

BUSY_POS

ERROR_POS

STRTMRK_POS

2

5

1

6

FUSED_5V

STATUSCOMMON

GND

STATUSVPOS

4

7

3

8

GND

NC

J6: User I/O

FUSED_5V

USERVPOS

USEROUT4_NEG

USEROUT4_POS

USEROUT3_NEG

USEROUT3_POS

USEROUT2_NEG

USEROUT2_POS

USEROUT1_NEG

USEROUT1_POS

Pin(s) Signal Name

2

11

12

3

13

4

5

6

16

14

15

1

USERIN4_NEG

USERIN4_POS

USERIN3_NEG

USERIN3_POS

USERIN2_NEG

USERIN2_POS

USERIN1_NEG

USERIN1_POS

7

8

9

19

17

18

10

20

1

3

5

7

9

11

13

15

17

19

21

23

25

2

4

6

8

10

12

14

16

18

20

22

24

26

DATAVPOS

FUSED_5V

J18

J9: Laser Extension

EC1000 I/O Module
EC1000 Board

GND

DATACOMMON

DATAOUT0

DATAOUT1

DATAOUT2

DATAOUT3

DATAOUT4

DATAOUT5

DATAOUT6

DATAOUT7

Pin(s) Signal Name

2

7

8

3

9

4

5

6

12

10

11

1

27

29

31

33

35

37

39

28

30

32

34

36

38

40

+3.3V

GND

8-Bit Laser Power Data Common

Interlock 1+

8-Bit Laser Power Data 0

Interlock 1-

8-Bit Laser Power Data 1

Interlock 2+

8-Bit Laser Power Data 2

Interlock 2-

8-Bit Laser Power Data 3

Interlock 3+

8-Bit Laser Power Data 4

Interlock 3-

8-Bit Laser Power Data 5

Interlock 4+

8-Bit Laser Power Data 6

Interlock 4-

8-Bit Laser Power Data 7

User Input 1+

User Input 1-

User Input 2+

User Input 2-

User Input 3+

User Input 3-

User Input 4-

User Output 1+

User Output 1-

User Output 2+

User Output 2-

User Output 3+

User Output 3-

User Output 4+

User Output 4-

Start Mark +

Start Mark -

User Input 4+

See Figure 19 for details on
other J5 pinouts.

From J17

Spare Output +

Spare Output -

1

6

7

12

1

10

11

20

8

5

4

1

Page 33 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

The 0-255 signal range corresponds to a voltage range of 0-10V for control of a digital laser. (Direct analog control of
a laser is provided through connector J8.) Four interlock lines are provided to provide interlock protection to the
scanning system, which can be connected to safety switches (for example, panel switches). All laser pattern
generation will stop immediately, any current job will be aborted and will need to be reset if an interlock is broken

There are four user inputs that are intended to provide external synchronization capability with external equipment
(for example, a loader or handler). The four independent bits can be used to pause a job.

There are four independent user outputs that are intended to provide system status/state information to external
equipment and/or user signalling devices. A fifth input, the Start Mark signal, is provided for backward compatiblity
with systems that may require it, but the signal can be considered a fifth user input and can be connected the J5
connector.

Figure 18 EC1000 J18 User I/O Pinouts and Connectivity to EC1000 I/O Module connectors, 2 of 2

1

3

5

7

9

11

13

15

17

19

21

23

25

2

4

6

8

10

12

14

16

18

20

22

24

26

GND

FUSED_5V

J18

J7: System Interlock

EC1000 I/O Module

EC1000 Board

INTERLOCK4_NEG

INTERLOCK4_POS

INTERLOCK3_NEG

INTERLOCK3_POS

INTERLOCK2_NEG

INTERLOCK2_POS

INTERLOCK1_NEG

INTERLOCK1_POS

Pin(s) Signal Name

2

6

7

3

8

4

5

9

10

1

27

29

31

33

35

37

39

28

30

32

34

36

38

40

+3.3V

GND

Interlock 1+

Interlock 1-

Interlock 2+

Interlock 2-

Interlock 3+

Interlock 3-

Interlock 4+

Interlock 4-

See for details on other J18 pinouts.

10

6

5

1

Page 34 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

4.11.3USER I/O B Connector

Connector J17 on the EC1000 board provides access to User I/O. The figures below details pinouts and relevant
pinouts and signal names for the EC1000 I/O Module connectors.

Figure 19 EC1000 J17 User I/O Pinouts and Connectivity to EC1000 I/O Module connectors

J5 System Status Control

MRKINPRG_POS

BUSY_POS

ERROR_POS

STRTMRK_POS

2

5

1

6

FUSED_5V

STATUSCOMMON

GND

STATUSVPOS

4

7

3

8

1

3

5

7

9

11

13

15

17

19

21

23

25

2

4

6

8

10

12

14

16

18

20

22

24

26

J17

EC1000 Board

27

29

31

33

35

37

39

28

30

32

34

36

38

40

Mark In Progress +

Mark In Progress -

Busy +

Busy -

Error +

Error -

Spare Output +

Spare Output -

Laser Enable

Laser On 1 (Gate)

Laser On 2 (Gate)

Reserved

Laser Modulation, Laser 1

Laser Modulation, Laser 2

Laser First Pulse Killer

Quadrature Input A Phase +

Quadrature Input A Phase -

Quadrature Input B Phase +

Quadrature Input Index +

Quadrature Input Index -

XY2_Channel 3 (Z) +

XY2_Channel 3 (Z) -

XY2_Channel 2 (Y) +

XY2_Channel 2 (Y) -

XY2_Status -

XY2_Channel 1 (X) +

XY2_Channel 1 (X) -

XY2_Sync +

XY2_Sync -

XY2_Clock +

XY2_Clock -

GND

XY2_Status +

Quadrature Input B Phase -

LASERFPK

GND

J8: Laser Control

EC1000 I/O Module

LASERMOD2

GND

LASERMOD1

GND

LASERRESERVED

GND

LASERON2

LASERON1

LASERENABLE

GND

Pin(s) Signal Name

2

9

10

3

11

4

5

6

14

12

13

1

EC1000 I/O Module

AGND

AOUT2_POS

AGND

AOUT1_POS

7

8

16

15

MOTFA_POS

MOTFA_NEG

J12: Mark-on-the-fly
EC1000 I/O Module

MOTFB_POS

MOTFB_NEG

MOTFZ_POS

MOTFZ_NEG

FUSED_5V

PWR_GND

Pin(s) Signal Name

2

5

6

3

7

4

8

1

CLOCK_NEG

CLOCK_POS

J13: XY2-100

EC1000 I/O Module

SYNC_NEG

SYNC_POS

CHAN1_NEG

CHAN1_POS

CHAN2_NEG

CHAN2_POS

Pin(s) Signal Name

2

8

9

3

10

4

11

1

CHAN3_NEG

CHAN3_POS

STATUS_NEG

STATUS_POS

GND

GND

6

12

13

7

14

5

+3.3V

8

5

4

1

1

8

9

16

8

5

4

1

1

7

8

14

RESET-

N/C

N/C

N/C

Fused_5V

Page 35 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

4.11.4Low Speed Serial Connectors

Connector J12 on the EC1000 board provides access to Low Speed Serial connection. The figures below details pinouts
and relevant pinouts and signal names for the EC1000 I/O Module connectors.

Figure 20 EC1000 J12 Low Speed Serial Pinouts and Connectivity to EC1000 I/O Module connectors

J2: Pendant Serial I/O

COM1_DCDI

COM1_RXDI

COM1_TXDO

COM1_DTRO

3

2

1

4

COM1_SRI

COM1_RTSO

COM1_CTSI

GND

7

6

5

8

1

3

5

7

9

11

13

15

17

19

2

4

6

8

10

12

14

16

18

20

J12

EC1000 Board

Transmit data (Serial Out)

Laser Receive Data (Serial In)

Request to Send

Laser Transmit Data (Serial Out)

Data Terminal Ready

GND

Receive Data (Serial In) Com1

Receive Data (Serial In) Com 3

Receive Data (Serial Out) Com 3

GND

GND

Clear to Send

Receive Data (Serial In)

Data Set Ready

Receive Data (Serial Out)

Carrier Detect

GND

Ring Indicator

 GND

EC1000 I/O Module

GND

FUSED_5V9

Pin(s) Signal Name

J11: Laser Serial Control

GND

LSR_RXD1

LSR_TXD0

GND

2

3

1

4

EC1000 I/O Module

Pin(s) Signal Name

1

3

5

7

9

11

13

15

17

19

2

4

6

8

10

12

14

16

18

20

J12continued

Laser Receive Data (Serial In)

Laser Transmit Data (Serial Out)

GND

Receive Data (Serial In) Com 3

Receive Data (Serial Out) Com 3

GND

Receive Data (Serial In)

Receive Data (Serial Out)

GND

J15: Diagnostics

GND

COM3_RDX

COM3_TXD

FPGA_RDX

2

4 (5)

1

5 (6)

EC1000 I/O Module

Pin(s) Signal Name

FPGA_TXD3

6 (7)

1 5

96

1

2

3

4

1

3

5

6

1

4

4

8

x (4)

x (8)

GND

GND

Rev A-E

Rev A-E

(Rev F)

FUSED_5V

Page 36 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

4.11.5Laser Analog Connector

Connector J19 on the EC1000 board provides access to Laser Analog connections. The figures below details pinouts
and relevant pinouts and signal names for the EC1000 I/O Module connectors.

The Laser Analog Power connectors are differential analog signals that go from 0-10V (not negative). The intent of the
laser analog power is to set the laser power level for the duration of a job. The AOM is a setting that can change very
rapidly, for example, to modulate the signal for raster bit-map type patterning, to vary each pixel’s intensity.

Figure 21 EC1000 J19 Laser Analog Pinouts and Connectivity to EC1000 I/O Module connectors

J19

EC1000 Board

Laser Analog Power +

Analog Reference Ground

Laser AOM +

Analog Reference Ground

3

4

5

6

1

2

LASERFPK

GND

J8: Laser Control

LASERMOD2

GND

LASERMOD1

GND

LASERRESERVED

GND

LASERON2

LASERON1

LASERENABLE

GND

Pin(s) Signal Name

2

9

10

3

11

4

5

6

14

12

13

1

AGND

AOUT2_POS

AGND

AOUT1_POS

7

8

16

15

3

4

5

6

1

2

J119: Laser Analog

EC1000 I/O Module

Back-side

1

8

9

16

Page 37 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

4.11.6XYZ Analog Signal Descriptions

The position command outputs for the X, Y and Z axes are differential analog signals that are both actively driven. If
it’s a single-ended application, the reference is the analog ground reference and the positive signal (plus signal) will
be the controlling output signal from the control board.

With differential analog signals, the signals are in relation to one another (+ and -), for example if the plus signal = 2
and the negative signal = -2 the differential is 4. This method is used on some controllers to reduce and/or compensate
for inherent signal noise, particulary when transfering signals over long distances.

CAUTION! !

Never connect the negative (minus) signal on the board to ground or you may damage the board. The minus signal is
actively driven by a driver op-amp.

4.11.7X & Y-Axis Connectors

Connectors J14 & J15 on the EC1000 board provides access to X & Y-Axis connections, respectively. The figure below
details the connector pinouts. Since the X & Y-Axis servo control electronics are expected to be contained within a
marking head along with the EC1000 controller, there are no provisions to provide external access to these signals via
the I/O Module.

Figure 22 EC1000 J14 & J15, X & Y-Axis Servo Controller Pinouts

4.11.8Z-Axis Connectors

The Z axis is optionally connected to the I/O Module, if a laser head has Z-axis (focus) control capability.

Connector J16 on the EC1000 board provides access to Z-Axis connections. The figures below details pinouts and
relevant pinouts and signal names for the EC1000 I/O Module connectors. The Z-Axis signals are carried over to the
I/O Module to provide external access to focusing systems that are not contained inside the marking head.

J14 EC1000 Board

X Axis Servo Cmd +

X Axis Servo Cmd -

Digital Ground

X Axis Servo Enable

X Axis Servo Ready

Analog Ground3

4

5

6

1

2

J15

Y Axis Servo Cmd +

Y Axis Servo Cmd -

Digital Ground

Y Axis Servo Enable

Y Axis Servo Ready

Analog Ground3

4

5

6

1

2

1 6

Page 38 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Alternatively, the signals may terminate directly at X-Axis servo control electronics within the head.

Figure 23 EC1000 J16 Z-Axis Pinouts and Connectivity to EC1000 I/O Module connector

3

4

5

6

2

J16

EC1000 Board

Z Axis Servo Cmd +

Z Axis Servo Cmd -

Digital Ground

Z Axis Servo Enable

Z Axis Servo Ready

Analog Ground3

4

5

6

1

2
ZOUT_POS

ZOUT_NEG

J10: Z Axis Control

EC1000 I/O Module

AGND

GND

Z_SERVO_EN

Z_SERVO_RDY

Pin(s) Signal Name

2

4

5

3

6

1

J110: Z Axis Control

1

Back-side

1

3

4

6

1 6

Page 39 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

4.11.9Power Connectors

J1 on the EC1000 I/O module is the main input power connector when both the E1000 and EC1000-IO modules are
used together. The IO module redistributes the power to three connectors: J16 and J17, located on the back-side are
intended to provide power to the X & Y galvo servo drivers. J101, also located on the back-side, provided power to
the EC1000 main module. The I/O module contains a +5Vswitching regulator that creates +5V from the + power
suply and delivers it to the EC1000 power connector, J101.

Figure 24 EC1000 J20 Power Pinouts and Connectivity to EC1000 I/O Module Connector (backside shown also)

PWR_POS

PWR_NEG

PWR_GND

PWR_+5V

Pin(s)Signal Name

3

2

1

4

EC1000 Board

PWR_POS

PWR_GND

J1 Frontside Connector

EC1000 I/O Module

PWR_NEG

Pin(s) Signal Name

3

2

1

PWR_GND

PWR_NEG

J16 Backside Connector

PWR_GND

PWR_POS

Pin(s) Signal Name

3

2

1

4

PWR_GND

PWR_NEG

J17 Backside Connector

PWR_GND

PWR_POS

Pin(s) Signal Name

3

2

1

4

5V Reg
on I/O
Module

System Power Input

X Servo Power

Y Servo Power

J20

J101 Backside Connector

12

4 3

12

4 3

1 2

43

1 2

43

1

3
PWR_POS

PWR_NEG

PWR_GND

PWR_+5V

Pin(s)Signal Name

3

2

1

4

Page 40 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

4.12XY2-100 Protocol Interface

The XY2-100 Protocol is a serial digital protocol that allows you to connect the controller to a scan head, and send
command data digitally. Each command is broken up and sent in a 20-bit serial data stream. The stream is received
at the scan head (and re-assembled into a parallel “word”) and converted via an A/D (analog/digital) converter to
an analog signal to drive the head galvonometers.

The signals that comprise the XY2-100 protocol are accessed via the EC1000-IO module at connector J13.

4.12.1XY2-100 Interface Timing

Figure 25 shows the timing of the XY2-100 interface.

Figure 25 XY2-100 Interface Timing

The EC1000 generates a digital serial stream for each of the axes and transmits them out the RS-422 tranceivers located
on the main module. These signals are routed to connector J13 on the EC1000-I/O module. The serial status stream
is de-serialized by the EC1000 and the resulting 16-bit value is presented in the XY2-100 Status register for application
use. The register is accessed by sending a register read request to the EC1000. See section: Priority Data Definition

4.13Stand-alone Operation

The EC1000 can function as a stand-alone controller providing laser system control without the need for a host
computer attached. In stand-alone mode, user interaction with the controller for job selection, job adjustment, and
administrative maintenance is provided through the use of an attached pendant. The EC1000 supports QSI
Corporation’s QTERM-J10 terminal attached through a standard RS-232 9-pin “D” interface connector (J2) located on
the EC1000-I/O board. This connector provides +5V on pin 9 for powering the QTERM-J10 module in anticipation
of using a QTERM-J10 with the +5V without power regulator option.

Standalone operation is enabled by appropriate interactions with the pendant, or by accessing the EC1000 via remote
control (section 7.2 Protocol Specification).

CLK

FS

DATA-X

DATA-Y

STATUS

......

......

......

T
U
= 10us

‘0’ ‘0’ ‘1’ D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00
Even

Parity
‘0’

Even

Parity

‘0’ ‘0’ ‘1’ D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00
Even

Parity
‘0’

Even

Parity

T
CLK

 = 500ns

0 1 Stat15 Stat14 Stat13 Stat12 Stat11 Stat10 Stat09‘0’ Stat08 Stat07 Stat06 Stat05 Stat04 Stat03 Stat02 Stat01 Stat00Parity
Even
Parity

‘0’

DATA-Z ‘0’ ‘0’ ‘1’ D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00
Even

Parity
‘0’

Even

Parity

Page 41 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

5 Principle Of Operation
The EC1000 controls a laser system’s galvanometers, accurately positioning deflection mirrors in synchronization
with laser control signals. The sequence of motions, the speed of operation, the power that the laser uses, and the
synchronization with external equipment is expressed in scanning jobs. These jobs consist of sequences of
instructions to the marking engine located on the EC1000 module. Some instructions configure the module such as
setting up to emit laser control signals with the appropriate timing relative to the commanded motion of the laser
steering galvos. The bulk of the instructions, however, are sequences of mark and jump instructions, which describe
when and where to move the galvos and when to gate the laser control signals relative to those motions.

Job data is typically prepared using editor applications designed for that purpose. These applications may be custom
software applications written by an OEM integrator, or one of several commercially available packages. These
applications are hosted on a Microsoft WindowsTM based PC and interface to the EC1000 modules through a
Microsoft COM DLL library. The library takes care of establishing and maintaining communications with an EC1000,
and provides a managed conduit for passing data to and from the controller. Figure 26 illustrates this arrangement.

The following sections describe the hardware and software architecture of the EC1000 system and define the COM
DLL Application Programming Interface (API) that would be used to control the EC1000.

Figure 26 EC1000 System Architecture

5.1 Hardware Overview

The EC1000 is a single board multi-processor system that contains a supervisory/communications control processor,
and a high-performance FPGA responsible for real-time micro-vectoring and laser control. The EC1000 is normally
paired with an I/O expansion module that takes signals from the EC1000 high-density ribbon cables and re-
distributes them to function specific connectors that are easy to interface to. The schematic of the EC1000-IO module
is in Appendix A and may be used as a reference for OEM specific designs that may only need a subset of the signals
provided. Figure 27 shows how the EC1000-IO module remaps the signals from the EC1000 board.

The EC1000 takes three voltages: ±15 to ±28V for the analog section, and +5V for the digital sections. Voltages
required for the various circuits on the module are regulated down from these supplies. Four mass-terminated ribbon
cables connect the EC1000 to the EC1000-IO module. Two are 40-pin 2mm pitch carrying all the system control
signals, one is a 26-pin 0.050” pitch carrying the Ethernet and USB signals, and the other is a 20-pin 0.050 pitch cable
carrying the RS232 serial communications signals.

Marking
application

EC1000
COM DLL

Windows
OS services

PC
Hardware

EC1000 CPU
Hardware

Vector engine
controller

OS Services

EC1000 Server
SW

Local mode
control SW

Galvo servos
and lasers

Virtual
connection

TCP/IP over Ethernet

Page 42 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Figure 27 EC1000-IO Module Block Diagram

The EC1000-IO module is intended to be mounted inside a laser head along with the EC1000 main module and
presents connectors on the top for interfacing to external devices such as lasers, automation equipment, and factory
networks. Connectors on the bottom side are provided for connection to the EC1000 and galvo servo controllers.

When properly configured, the EC1000 boots up from on-board Flash memory, configures any attached devices, and
begins local intraction with an attached pendant, or waits for network connections to be made to it.

Top-side

connectors

+/- 15-28V

+5V

Regulator

+/- 15-28V, +5V

+15-28V

+5V

+/- 15-28V

Bottom-side

connectors

To EC1000

+/- 15-28V

+/- 15-28V

To X Galvo

To Y Galvo

3mm x
16

Laser control

3mm x
20

User I/O

2
mm

x 40

Laser digital control

User I/O

3mm x
8

Digital quadrature Digital quadrature (MOTF)
To EC1000

To EC1000

Controller I/O “A”

Controller I/O “B”

Ethernet
RJ-45 EthernetEthernet

To EC1000

USB 0-1 To EC1000

USB

Host
USB 0USB

USB 1USB
Host

USB

Serial I/O

DB-9 Console (COM1)Pendant

To EC1000

2.5

mm
x 6

A1/A2 DAC output From EC1000Laser analog DAC output

3mm x

12
Laser data Laser data

Interlocks
3mm x

10
Interlocks

System status3mm x
8

System status

3mm x
4

3mm x

6

Laser serial

Diag serial

Laser serial

Diag serial

Page 43 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

5.2 Software Overview

The EC1000 contains a fully integrated processor and operating system capable of high-level communications with a
supervisory host workstation using TCP/IP protocols, or operating in a fully independent stand-alone mode. The
control software of the EC1000 is stored in Flash memory on the module. In a networked application, the EC1000
firmware boots upon system power-up and automatically periodically broadcasts identification information on the
network. Application software on a host that links with the EC1000 ActiveX/COM interface software can accept and
process these broadcast messages. The broadcast messages contains data that identifies the serial number, friendly
name, and IP address of the EC1000. This data, in turn is used to establish session communication channels to the
controller. Figure 28 illustrates this relationship.

Figure 28 EC1000 Software Data Flow

A communications session, also supported by the COM interface, permits the transmission of job data to the EC1000
and the reception of job-generated messages. Jobs are streamed to the EC1000 with multiple levels of buffering to
guarantee full marking performance without CPU load-dependent timing anomalies. Two additional channels of
communications are provided to permit asynchronous job aborts, job pausing and resuming, and exception message
propagation back to the application.

The COM interface provides high-level functions for setting laser timing and scanner parameters, and for specifying
motion vector sequences at any desired speed. Instead of requiring a sequence of mark and jump instructions to be
issued by the application, the interface supports the passing of marking objects that are lists of X, Y and Z coordinates.
To make such an interface programming language independent, the data of a marking job are transferred across the
application/COM interface as XML data. XML is a standard text-based specification language used in many internet
applications to represent data in a portable manner.

The system also supports the concept of fixed config data, i.e. data that defines the configuration of the scan-head and
surrounding electronics. Examples of such data are lens correction tables, laser interface signal polarities, lens field-
size, focal length and calibration values, etc. This data can be set by a system integrator and stored in Flash memory
on the EC1000. This data is also specified in XML.

5.3 Scanning Job Fundamentals

The purpose of scanning jobs is to direct the motion of laser galvanometers while simultaneously modulating a laser
beam. The laser is turned on when a pattern is to be drawn, and off when moving to the beginning of a new pattern
location. In laser marker systems, the drawing action is comonly refered to as a “mark”, and a move to new pattern
location is called a “jump”. These terms will be used in the rest of this manual to describe these fudamental actions
even though an EC1000 could be used for laser projection where a more appropriate term for “mark” might be
“display”.

Application

EC1000

EC1000

Bro
adc

ast
s

FLASH

BroadcastsBro
adc

ast
s

API

EC1000 ID
Data

Connection
Data

TCP/IP Connection to selected EC1000

FLASH

Config data

Local mode
Job data

Streamed job data

Config data
Event data

Config data

Local mode
Job data

Config data

Page 44 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

5.3.1 Coordinate system conventions

Both of the basic movement commands, “mark” and “jump” are expressed in a cartesian coordinate system that is
illustrated in Figure 29

Figure 29 Scanning system coordinate conventions

The imaging field is addressed using 16-bit integers with a range of -32768 to +32767. These units are referred to in
the following sections as “bits”. All job coordinates are expressed in these units. If an application desires to represent
coordinates in other units such as mm, then those coordinates must be scaled appropriately taking into account the
projection system optics that are involved.

5.3.2 Marks and Jumps

Laser marking is specified by a list of XML data that defines “jumps” to locations and “marks” to the end points of a
vector or series of “connected” vectors otherwise known as poly-vectors. Other XML data represent commands to
specify related actions and pauses required to ensure the desired marking quality. The terms Mark, Jump, and related
delays are defined below.

Figure 30 Laser marking sample

Figure 30 shows a sample of the beginning of a simple laser marking. The image is composed of straight line segments
(vectors). Connected line segments are formed with sequential Mark commands and spaces between unconnected
segments are formed with Jump commands. Both Marks and Jumps are controlled-velocity coordinated X & Y galvo
motions. The speeds are controllable within a job.

(0, 32767)

(32767, 0)

(0, -32768)

(-32768, 0) (0, 0)
X

Y

Mark

M
ar
k

Jump

Mark Jump

MarkM
ar
k

M
ar
k

Mark

Jum
p

Ma
rk

M
arkJump

Jump

Mark

M
ar
k

Mark
Ma
rk

Page 45 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

Basic Action Commands

In addition to the dynamic signals used to control the galvanometers and lasers, the EC1000 provides supplemental
digital inputs and outputs for external equipment synchronization, and two analog outputs for laser power
adjustment. These signals can be manipulated at any point in a job, but are less tightly controlled in time as compared
with the galvanometer and laser control signals.

The initial galvanometer position after system power-up is the center of the image field. Marks and jumps are
specified from the current position of the galvanometers to a new target position. Jobs typically begin with an
absolute jump to the first marking position, and after that, each vector (jump or mark) starts at the new current
position, which is usually the end point of the preceding vector.

5.3.3 Micro-vectoring

Controlled velocity marking and jumping is accomplished through a process call micro-vectoring. This process is
illustrated in the Figure 31 The marking engine of the EC1000 takes a vector and divides it into multiple shorter
segments that are applied to the galvos at regularly spaced time intervals. This interval is known as the update
interval. The galvo speed is controlled by magnitude of the change in the ouput command at each update period.

The figure shows the sequence of typical output commands for the X axis. The commands for the Y and Z axes are
similar and are strictly locked in time with the X axis, differing only in magnitude of the disctrete steps. As the X axis
reaches successive targets X1,X2, etc., so do the Y and Z axes reach their corresponding targets, Y1, Z1,Y2, Z2, etc.

Figure 31 Micro-vector operation

5.3.4 Delays

Because laser scanning systems are electro-mechanical in nature, various delays must be employed to compensate for
inertial effects of the mirror and motor structure. These effects generally result in a positional lag of the deflection
mirrors relative to the electrical command to make them move. These delays are used to properly time laser on/off
and modulation signals relative to the mirror positions. In addition to compensating for lag times, the delays can be
used to compensate for transient instability in mirror positions after a step to a new location. The following figures
illustrate these effects.

Each system configuration requires fine-tuning of delay commands to ensure full and complete marking with no

Command/Parameter Purpose

Jump

A jump causes a (typically) rapid movement of the scanner mirrors to a new position. Ideally no marking
occurs during a jump, and typically, the laser is turned off during a jump.

The jump command defines the starting point (X and Y coordinates) of the laser marking: the EC1000 directs
the laser to the end of the “jump” position where marking will begin.

JumpSpeed
Determines the speed of the jump. The laser is off during a jump and the jump speed is set high enough to
maximize throughput, but low enough to minimize instability in the galvo motion as the galvo slows down in
its approaches the next marking location.

Mark

A mark command begins the marking process. The laser typically turns on at the beginning of the mark
command and continues at a set speed to it’s pre-defined location (X and Y coordinates) of the end point of a
mark command. As show in Figure 30, subsequent mark commands can create a sequence of marks. The laser
is turned off at the end of the last Mark command in a series of commands.

MarkSpeed
Sets the speed during marking. The speed is set to a value such that the laser forms the proper width and
depth of a mark in the target media. This is laser power and target material dependent.

Delays
Delays are used to ensure that the marking is complete with no skips, no over-burns, and no inadvertent
marks. Delay commands are necessary to fine-tune system control, as need to compensate for system inertia,
acceleration, deceleration, and requested jump and marking speeds.

Update period

dX

X
0

X
1

X
2

X
3

X
4

Galvo output

command

Galvo

response

Page 46 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

overburns. The individual delay settings are dependant on the dynamic response of the galvo/mirror combination
in use, and the sensitivity characteristics of the marking medium. Determining these delays is typically a trial-and-
error process. The delays are specified as part of the job definition described in the next section.

Parameter Purpose Effects

JumpDelay

During a jump, the system mirrors accelerate
to rapidly get to the next mark position,
ideally at the fastest speed possible to
minimize overall marking time. As with all
accelerations, mirror and system inertia
create a slight lag at the beginning of the
acceleration. Likewise, the system will
require a certain delay (settling time) at the
end of the jump as it decelerates to precisely
the correct speed required for accurate
marking.

Acceleration and deceleration times and
settling times will vary from system to
system (weight of mirrors, type of
galvanometer, etc.), and will vary depending
on the requested jump speed and the length
of the jump.

Too short of Jump Delay will cause marking
to start before mirrors are properly settled,
resulting in inadvertent marking.

Too long of a Jump Delay will have no visible
effect, but marking is delayed so overall job
production time (marking time) increases.

MarkDelay

A mark delay at the end of marking a line
segment allows the mirrors to move to the
required position prior to executing the next
mark command.

Too short of a Mark Delay will allow the
subsequent jump command to begin before
the system mirrors get to their final marking
position. The end of the current mark will
turn upwards towards the direction of the
jump vector, as shown to the right.

Too long of a Mark delay will cause no
visible marking errors, but will add to the
overall processing time.

Jump Delay Too Short: Marking starts before mirrors properly settle

actual position

set position

la
g

time

Jump Command:

Mark

M
ar
k

Jump

Mark Jump

MarkM
ar
k

M
ar
k

Mark

Jum
p

Ma
rk

M
arkJump

Jump

Mark

M
ar
k

M
ark

Ma
rk

jump delay
(unstable period)

Mark Delay Too Short: Marking continues into a jump vector

Mark

M
ar
k

Jump

Mark Jump

MarkM
ar
k

M
ar
k

Mark

Jum
p

Ma
rk

M
arkJump

Jump

Mark

M
ar
k

Mark
Ma
rk

Page 47 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

LaserOnDelay

The Laser On Delay can be used to prevent
burn-in effects at the start of a vector. This
delay in time before the laser is turned on is
typically used to turn on the laser after the
first few microsteps of a mark command to
ensure that the laser’s motion control systems
(mirrors, etc.) are “up to speed” before
marking. The vectors must be scanned with a
constant velocity to ensure uniform marking.

This delay can have either a positive or
negative value and will vary with different
marking media (some media require a burn-
in time to begin marking). The goal is to
adjust the LaserOn Delay to ensure uniform
marking with no variations of intensity
throughout the desired vector.

Typically, too short of a delay will cause
burn-in effects, and too long of a delay will
cause skipping (missed line segments).

PolyDelay

A polygon delay is a delay automatically
inserted between two marking segments.
The minimum delay allows enough time for
the galvos and mirror to “catch-up” with the
command signal before a new command is
issued to move on to the next point.

If variable polygon delay mode is selected,
then the delay is variable and changes as a
function how large an angular change is
required to move on to the next point. The
larger the angular change, the longer it takes
for the galvos to change direction and
accelerate to the required speed in the new
direction. The delay is scaled proportionally
to the size of the angle.

Mark

M
ar
k

Jump

Mark

Mark Jump

MarkM
ar
k

M
ar
k

Mark

Jum
p

Ma
rk

M
arkJump

Jump

Laser On Delay Too Short: burn-in at start points

Mark

M
ar
k

M
ark

Ma
rk

Mark

M
ar
k

Jump

Mark

Mark Jump

MarkM
ar
k

M
ar
k

Mark

Jum
p

Ma
rk

M
arkJump

Jump

Laser On Delay Too Long: marking starts too late, skips points

Mark

M
ar
k

Mark
Ma
rk

Mark

M
ar
k

Jump

Mark

Mark Jump

MarkM
ar
k

M
ar
k

Mark

Jum
p

Ma
rk

M
arkJump

Jump

Polygon Delay Too Short: characters not wellformed

Mark

M
ar
k

M
ark

Ma
rk

Mark

M
ar
k

Jump

Mark

Mark Jump

MarkM
ar
k

M
ar
k

Mark

Jum
p

Ma
rk

M
arkJump

Jump

Polygon Delay Too Long: burn-in at junctions in the vector

Mark

M
ar
k

Mark
Ma
rk

Page 48 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

The relationship of the delays to the micro-vectoring process is illustrated in Figure 32.

Figure 32 Micro-vectoring and laser timing relationships

LaserOffDelay

The Laser Off Delay can be used to prevent
burn-in effects at the end of a vector. This
delay in time before the laser is turned off is
typically used to turn off the laser just before
the last few microsteps of a mark command
to ensure that the marking stops exactly
where it is desired to stop.

The goal is to adjust the Laser Off Delay to
ensure uniform marking with no variations
of intensity throughout the desired vector.

Typically, too short of a delay will cause
skipping of line segments, and too long of a
delay will cause burn-in at the end of line
segments.

Laser Off Delay Too Short: marking stops too soon, skipped endpoints

Laser Off Delay Too Long: marking stops too late, burn-in at end points

Mark

M
ar
k

Jump

Mark

Mark Jump

MarkM
ar
k

M
ar
k

Mark

Jum
p

Ma
rk

M
arkJump

Jump

Mark

M
ar
k

Mark
Ma
rk

Mark

M
ar
k

Jump

Mark

Mark Jump

MarkM
ar
k

M
ar
k

Mark

Jum
p

Ma
rk

M
arkJump

Jump

Mark

M
ar
k

Mark
Ma
rk

Laser emission

Polygon delays

Laser off delay

Mark delay
Laser on delay

Jump delay

Page 49 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

5.4 Image Field Correction

Image field correction capability is provided to compensate for optical errors induced by all two-mirror laser beam
systems. These optical distortions are caused by a number of factors, including the distance between each mirror, the
distance between the mirrors and the image field, and the type of lens used in the laser for focusing the laser beam.

Figure 33 shows the basic projection system layout.

Figure 33 Projection system layout

5.4.1 X-Y Mirror Induced Distortion

Projection of a laser beam via an X-Y mirror set controlled by galvanometers induces distortion in the X axis
propotional to the tangent of the angle of the Y axis mirror and the distance from the focal plane to the center of the
Y axis mirror. This distortion is also known as “pincushion” distortion.

Figure 34 Pincushion distortion caused by X-Y mirror set

5.4.2 F-theta Objective Induced Distortion

The addition of an F-theta objective in the laser field provides direct proportionality between the scan angle and the
distance in the image field, as well as ensure that the focus lies on a flat surface. F-theta objective lenses, like all optical

Θy

Θx

Beam direction

Page 50 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

lenses, are not perfect and induce their own projection field distortions. This distortion, illustrated in Figure 35, is
called “pillow” distortion for what it does to a square image. In reality, this distortion is radially symetric from the
image field origin and can often be modeled as a third order polynomial. Many projection lens vendors will provide
these model coefficients, or measurement data from which these coefficients can be derived. For many applications,
however, this distortion is negligible.

Figure 35 Pillow distortion caused by F-theta lens

5.4.3 Composite Distortion and Correction Methodology

The two distortion components described above combine to to create a distorted image field similar to that shown in
Figure 36. This distortion is automatically compensated for by the EC1000 through the use of correction tables.

Figure 36 Composite Image Field Distortion

Correction tables represent a 65x65 element grid covering the full addressable projection range of the system. Each
grid element contains three correction components: one each for the X, Y and Z axes. The components represent an
offset that if added to an ideal position command for that point, would alter the galvo positions such that the resulting
projected point would fall onto a “perfect” grid, i.e. the point would be “corrected”.

During the micro-vectoring process at each update interval, the EC1000 calculates the ideal position of the mirrors
along the path. It compares this value to the correction table grid and accesses the four grid points that immediately
surround the calculated point. The corrections at these four points are proportionally averaged depending on how
close the ideal point is to each grid point. This process, called bi-linear interpolation, produces a correction that is
applied to the ideal point, and the result is then sent to the system D/A converters and serial digital command
outputs.

The EC1000 has integral support for up to four independent three-axis correction tables. These tables are organized
in pairs where the first table of the pair is applied to the analog D/A converters, and the second is applied to the XY2-
100 port. The table pairs are selectable dynamically though the job parameter ActiveCorrectionTable described in
section 6.3.5. Table contents can be automatically loaded on board power-up from stored correction table files, or can
be dynamically loaded via the sendStreamData method of the session API described in section 6.3.

Page 51 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

5.5 Laser Timing Control

The EC1000 provides very flexible laser control capability that is synchronized with galvo motion control. Six1
dedicated TTL compatible signals are provided at all times whose timing relationships are defined by the diagram
below. Not all signals may be required for a given customer laser configuration. An integrator need only select an
appropriate subset of these signals, and configure them via software with appropriate timing parameters. Provisions
are made for the synchronous control of two separate lasers running with two independent pulse-widths during the
laser-on period. Laser control timing is specified in terms of laser timing “ticks” which can be set via software to an
interval as small as 20ns to as large as 1.3ms with a resolution of 20ns. The typical tick value is set to 1us.

Figure 37 Laser timing relationships

1. The signal LASERON2 is also provided with multiple progammable functions to support pointer laser operation

Notes:
1. Laser Enable delay, Laser Enable timeout, and Laser Modulation delay must be >= 0

2. Laser Enable delay is relative to the leading edge of LASERON but the leading edge of LASERENABLE will never occur after:
a) Micro-vector start

b) the leading edge of LASERON

c) the leading edge of LASERFPK
3. Laser On delay may be positive or negative and is relative to Micro-vector start
4. Laser FPK position may be positive or negative and is relative to the leading edge of LASERON

5. Laser pulse generation starts relative to but no earlier than the leading edge of LASERON or the leading edge of LASERFPK.
6. Standby pulse suppression is accomplished by setting the standby pulse width to zero

7. The first laser-on laser pulse on LASERMOD1 & 2 is always a full pulse

½ standby

period

Laser 1 standby pulse width

Laser On delay

(+/-), + shown

Laser Off delay

½ output
period

Laser 1

pulse width

Laser 2

pulse width

LASERMOD1

LASERMOD2

LASERON1

LASERFPK

Laser FPK position
(+/-), - shown

Laser FPK length

Micro-vector start

Laser Modulation delay

Laser Enable
timeout

Pulse may be

truncated
Standby pulse period

Laser ouput

pulse period

LASERENABLE

Laser Enable delay

Laser 2 standby pulse width

Servo Position Cmd

Micro-vectoring in

process

Page 52 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Figure 37 introduces 12 timing parameters that can be set to yield signal relationships that are suitable for controlling
all known commercial lasers used in marking or projection scanning systems. The reference point for the timing is
the beginning of micro-vectoring shown on the diagram as Micro-vector start. When the marking engine processor
encounters a mark instruction it asserts the LASERENABLE signal and waits the specified Laser Enable delay. The
LASERENABLE signal is normally used to precondition fiber laser systems in anticipation of being called into action
during a marking operation. LASERENABLE will remain asserted until the Laser Enable timeout period expires after
marking has stopped, i.e. after the last vector of a sequence of marking vectors. If a new series of marking vectors
begins before the Laser Enable timeout expires, LASERENABLE remains asserted and a new timeout period is armed.

When the Laser Enable delay expires, one of three things will happen based on the setting of the delay parameters:

1. Micro-vectoring begins if Laser On delay and Laser First Pulse Killer (FPK) position are both positive

2. LASERON is aserted if Laser On delay is negative and Laser FPK position is positive

3. LASERFPK is aserted if Laser FPK delay is negative and Laser On delay is also negative OR if Laser FPK delay
is negative and the absolute value of Laser FPK delay is larger than Laser On delay if Laser On delay is positive

As can be seen from the diagram the timing of laser emission is directly related to the timing of the LASERON signal.
Pulse emission will never occur earlier than the leading edge of LASERON or LASERFPK, but may be delayed after
the leading edge of LASERON by setting the Laser Modulation delay to a non-zero value. The LASERFPK signal may
be asserted any time before or after the leading edge of LASERON. The signals LASERFPK and LASERMODn are
dependently related to the timing of LASERON. That is, if Laser On delay is changed, the system timing is changed
to keep all three signals in the proper timing relationship.

The LASERMOD1 and LASERMOD2 signals are time-related in that the periods of the signals must be the same for
the standby (laser not active) and ouput active (laser emitting) intervals. The phase of the two signal is locked 180
degrees apart from each other to ensure that the two lasers never fire at the same instant of time, thus reducing peak
power demands and reducing EMI effects. Otherwise, the pulse widths during the standby and output active
intervals are independent and programmable for each signal.

The lasers are turned off automatically after the micro-vectoring completes and the Laser Off delay expires. The
LASERON signal is de-asserted and the LASERMOD1/2 signals switch to the standby mode.

Page 53 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

5.5.1 Software Control of Laser Timing

The laser timing configuration is statically specified in an XML based configuration file stored on the EC1000 and is
automatically applied at system boot-up. The configuration can be changed by reading it through the software
Application Programming Interface (API), altering it, and then sending it back to the controller. Changes made this
way would be applied every time the EC1000 re-initializes. The configuration information can also be specifed
dynamically in a job stream and applied on a temporary basis being persistant only until the next re-initialization.
These concepts are described more fully in section 6 Application Programming Interface.

All of the programmable control elements of the EC1000 are manipulated through XML language constructs passed
through the API. At system boot-up, XML configuration files are read from Flash memory on the controller and some
of the parameters are applied to the hardware to pre-configure it. The Laser Configuration fixed-data described in
section: Laser Configuration, contains definitions to specify laser marking and idle-time pulse-widths and frequency,
signal polarities, FPK signal timing, etc. These parameters do not often change during a marking job, although
provisions are made in the Job Stream XML specification to do so if required. Other laser timing parameters such an
Laser On Delay and Laser Off Delay are expected to change as the job is tuned for best performance. These parameters
are directly controlled by JobStream XML constructs, but not in the Laser Configuration XML specification.

Table 2: Laser Configuration Control XML with example settings

Static Configuration XML Dynamic Configuration XML Example Description

<LsrTiming>50</LsrTiming> <set id=”LaserTiming”>50</set>
Set the laser time base to 1µsec:

50 * 20ns = 1µsec “tick”

<LsrPipeDly>0</LsrPipeDly> <set id=”LaserPipelineDelay”>0</set>

Normally zero except when using CTI DC900 or
DC2000 digital servos. This value is used the delay all
of the the laser timing signals as a group relative to
the galvo commands.

<LsrPwrDly>1700</LsrPwrDly> <set id=”LaserPowerDelay”>1700</set>
The job will delay for 1.7msec every time the laser
power is changed

<LENAHigh>false</LENAHigh>

<set id=”LaserModeConfig”>0</set>
LaserModeConfig uses a bit-mask to represent the
various signal polartities. See section: Laser
Configuration for more details.

<LONHigh>false</LONHigh>

<LON2High>false</LONHigh>

<LMOD1High>false</LMOD1High>

<LMOD2High>false</LMOD2High>

<LFPKHigh>false</LFPKHigh>

<LsrEnaDly>7000</LsrEnaDly> <set id=”LaserEnableDelay”>7000</set> Wait 7msec after asserting the LASERENABLE signal

<LsrEnaTmo>4000</LsrEnaTmo> <set id=”LaserEnableTimeout”>4000</set>
Deassert LASSERENABLE if there is no laser activity
requested within 4msec of when the laser turned off.

<LsrModDly>20</LsrModDly> <set id=”LaserModDelay”>20</set>
Delay the modulation of the laser for 20 laser timing
ticks (20µsec) after LASERON is asserted

<FpsPos>-30</FpsPos>

<set id=”LaserFPK”>--30,10</set>

Assert LASERFPK -30 laser timing ticks (-30µsec)
relative to the leasding edge of LASERON. Deassert
LASERFPK 10 laser timing ticks (10µsec) after it was
asserted.

<FpsWidth>10</FpsWidth>

<TickleWidth1>5</TickleWidth1>
<set id=”LaserStandby”>1, 5, 200</set>

For Laser 1, set the stand-by (idle) pulse width to 5
laser timing ticks (5µsec) and set the period to 200
ticks (200µsec). This is a pulse frequency of 5KHz<TickleFreq1>5</TickleFreq1>

<TickleWidth2>10</TickleWidth2>

<set id=”LaserStandby”>2, 10, 200</set>

For Laser 2, set the stand-by or idle pulse width to 10
laser timing ticks (10µsec) and set the period to 200
ticks (200µsec). This is a pulse frequency of 5KHz.

Pulse period/freq must be the same as for Laser 1
<TickleFreq2>5</TickleFreq2>

N/A <set id=”LaserOnDelay”>150</set>
LASERON is asserted 150 laser timing ticks (150µsec)
after the start of micro-vectoring

N/A <set id=”LaserOffDelay”>100</set>
LASERON is deasserted 100 laser timing ticks
(100µsec) after the micro-vectoring has completed

N/A <set id=”LaserPulse”>1, 8, 15</set>
For Laser 1, set the “Laser On” pulse width to 8 laser
timing ticks (8µsec) and set the period to 15 ticks
(15µsec). This is a pulse frequency of 66.7KHz

N/A <set id=”LaserPulse”>2, 10, 15</set>

For Laser 1, set the “Laser On” pulse width to 10 laser
timing ticks (10µsec) and set the period to 15 ticks
(15µsec). This is a pulse frequency of 66.7KHz.

Pulse period/freq must be the same as for Laser 1

Page 54 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

5.5.2 Laser Timing Emulation

Traditional laser scanning controllers often use fixed signal sets and constrained timing relationships to provide laser
control, whereas the EC1000 uses a completely flexible and programmable suite of signals. The EC1000 can be
configured to emulate the timing produced be other commercial controllers because of the flexible nature of the laser
timing generator.

Typical laser configurations are shown in the following diagrams. These configurations emulate the laser control
performed by the RAYLASE AG SP-ICE card, and SCANLAB RTC3/4 and SCANalone series of scan head controllers.
These configurations are by no means the only ones possible and new laser systems are frequently introduced. Most
notably, fiber lasers have become much more reliable and affordable offering compact packaging and highly efficient
energy properties. The EC1000 has been specifically designed to accomodate the unique timing requirements of these
lasers.

Along with each diagram, examples of the XML for both statically and dynamically configuring the behavior is
illustrated. Only those parameters that are meaningful for the illustration are specified in the examples. Other
parameters used to set signal polarities, Laser Enable Delay/Timeout, Standby (Tickle) timing, Laser Power Delay
and Laser Pipeline Delay are almost always set to pre-defined values. Laser Pulse timing, although potentially
variable during a job, does not affect the fundamental signal relationships that define the laser emulation modes. In
addition, the specification of a laser timing “tick” is most conveniently set to a 1µsec interval, which is assumed in the
examples.

Page 55 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

CO2 Laser Timing

Figure 38 Laser timing for CO2 laser systems

The simplest emulation mode is for CO2 lasers. These lasers do not require a Laser FPK signal so these parameters
are set to zero. LASERENABLE is also not typically needed therefore the Laser Enable delay and Laser Enable timeout
can be set to zero to maximize throughput. In fact, whenever LASERENABLE is not required, the Laser Enable delay
should be set to zero.

Table 3: Example CO2 Laser Configuration XML

Static Configuration XML Dynamic Configuration XML Example Description

<LsrEnaDly>0</LsrEnaDly> <set id=”LaserEnableDelay”>0</set> Maximizes throughput

<LsrEnaTmo>0</LsrEnaTmo> <set id=”LaserEnableTimeout”>0</set> Maximizes throughput

<LsrModDly>0</LsrModDly> <set id=”LaserModDelay”>0</set> No modulation delay required

<FpsPos>0</FpsPos>
<set id=”LaserFPK”>0, 0</set> No FPK required

<FpsWidth>0</FpsWidth>

<TickleWidth1>5</TickleWidth1>
<set id=”LaserStandby”>1, 5, 200</set>

Laser 1 stand-by; pulse width == 5 laser timing ticks
(5µsec); pulse period == 200 ticks (200µsec) == 5KHz <TickleFreq1>5</TickleFreq1>

<TickleWidth2>10</TickleWidth2>
<set id=”LaserStandby”>2, 10, 200</set>

Laser 2; pulse width = 10 laser timing ticks (10µsec);
pulse period == 200 ticks (200µsec) == 5KHz, must be
same as Laser 1<TickleFreq2>5</TickleFreq2>

N/A <set id=”LaserOnDelay”>150</set> 150 laser timing ticks == 150µsec

N/A <set id=”LaserOffDelay”>100</set> 100 laser timing ticks == 100µsec

N/A <set id=”LaserPulse”>1, 8, 15</set>
Laser 1 operating; pulse width == 8 laser timing ticks
(8µsec); pulse period == 15 ticks (15µsec) == 66.7KHz

N/A <set id=”LaserPulse”>2, 10, 15</set>
Laser 2 operating; pulse width == 10 laser timing ticks
(10µsec); pulse period == 15 ticks (15µsec) == 66.7KHz,
must be same as Laser 1

½ standby

period

Laser 1 standby pulse width

Laser On delay
(+/-), + shown

Laser Off delay

½ output
period

Laser 1
pulse width

Laser 2
pulse width

LASERMOD1

LASERMOD2

LASERON1

LASERFPK

Laser FPK position = 0

Laser FPK length = 0

Micro-vector start

Laser Modulation delay = 0

Laser Enable

timeout = 0

Pulse may be

truncated
Standby pulse period

Laser ouput
pulse period

LASERENABLE

Laser Enable delay = 0
(minimum shown)

Laser 2 standby pulse width

Servo Position Cmd

Micro-vectoring in

process

Page 56 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Nd:YAG Emulation Mode-1 Timing

Figure 39 Nd:YAG Emulation Mode-1 (Raylase Nd:YAG Mode-1 and Scanlab YAG 1)

Most of theYAG modes do not require standby or idle pulses. To supress these pulses, the Standby pulse width and
pulse period are set to zero. In this mode, the LASERFPK is asserted coincident with the LASERON and LASERMOD
signals, but its assertion can have variable length. If the Laser On delay is modified, the timing of LASERFPK and
LASERMOD track with it.

Table 4: Example Nd:YAG Mode-1 Laser Configuration XML

Static Configuration XML Dynamic Configuration XML Example Description

<LsrEnaDly>0</LsrEnaDly> <set id=”LaserEnableDelay”>0</set> Maximizes throughput

<LsrEnaTmo>0</LsrEnaTmo> <set id=”LaserEnableTimeout”>0</set> Maximizes throughput

<LsrModDly>0</LsrModDly> <set id=”LaserModDelay”>0</set> No modulation delay required

<FpsPos>0</FpsPos>
<set id=”LaserFPK”>0, 15</set> Example FPK length set to 15usec with no shift

<FpsWidth>15</FpsWidth>

<TickleWidth1>0</TickleWidth1>
<set id=”LaserStandby”>1, 0, 0</set> 1 == laser; No tickle pulses required

<TickleFreq1>0</TickleFreq1>

<TickleWidth2>0</TickleWidth2>
<set id=”LaserStandby”>2, 0, 0</set> 2 == laser; No tickle pulses required

<TickleFreq2>0</TickleFreq2>

N/A <set id=”LaserOnDelay”>150</set> 150 laser timing ticks == 150µsec

N/A <set id=”LaserOffDelay”>100</set> 100 laser timing ticks == 100µsec

N/A <set id=”LaserPulse”>1, 8, 15</set>
Laser 1 operating; pulse width == 8 laser timing ticks
(8µsec); pulse period == 15 ticks (15µsec) == 66.7KHz

N/A <set id=”LaserPulse”>2, 10, 15</set>
Laser 2 operating; pulse width == 10 laser timing ticks
(10µsec); pulse period == 15 ticks (15µsec) == 66.7KHz,
must be same as Laser 1

Laser 1 standby pulse width = 0

Laser On delay

(+/-), + shown

Laser Off delay

½ output
period

Laser 1

pulse width

Laser 2
pulse width

LASERMOD1

LASERMOD2

LASERON1

LASERFPK

Laser FPK position = 0

Laser FPK length

Micro-vector start

Laser Modulation delay = 0

Laser Enable

timeout = 0

Pulse may be

truncated
Standby pulse period = 0

Laser ouput
pulse period

LASERENABLE

Laser Enable delay = 0

(minimum shown)

Laser 2 standby pulse width = 0

Servo Position Cmd

Micro-vectoring in

process

Page 57 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

Nd:YAG Emulation Mode-2 Timing

Figure 40 Nd:YAG Emulation Mode-2 (Raylase Nd:YAG Mode-2)

In this mode, the LASERFPK signal is a 10µ sec pulse asserted a variable amount of time prior to the assertion of
LASERON and the coincident generation of pulses. This timing is typically suited for Lee and Coherent lasers.

Table 5: Example Nd:YAG Mode-2 Laser Configuration XML

Static Configuration XML Dynamic Configuration XML Example Description

<LsrEnaDly>0</LsrEnaDly> <set id=”LaserEnableDelay”>0</set> Maximizes throughput

<LsrEnaTmo>0</LsrEnaTmo> <set id=”LaserEnableTimeout”>0</set> Maximizes throughput

<LsrModDly>0</LsrModDly> <set id=”LaserModDelay”>0</set> No modulation delay required

<FpsPos>-20</FpsPos>
<set id=”LaserFPK”>-20, 10</set>

Example FPK length set to 10µsec with a minus 20µsec
shift relative to LASERON<FpsWidth>10</FpsWidth>

<TickleWidth1>0</TickleWidth1>
<set id=”LaserStandby”>1, 0, 0</set> 1 == laser; No tickle pulses required

<TickleFreq1>0</TickleFreq1>

<TickleWidth2>0</TickleWidth2>
<set id=”LaserStandby”>2, 0, 0</set> 2 == laser; No tickle pulses required

<TickleFreq2>0</TickleFreq2>

N/A <set id=”LaserOnDelay”>150</set> 150 laser timing ticks == 150µsec

N/A <set id=”LaserOffDelay”>100</set> 100 laser timing ticks == 100µsec

N/A <set id=”LaserPulse”>1, 8, 15</set>
Laser 1 operating; pulse width == 8 laser timing ticks
(8µsec); pulse period == 15 ticks (15µsec) == 66.7KHz

N/A <set id=”LaserPulse”>2, 10, 15</set>
Laser 2 operating; pulse width == 10 laser timing ticks
(10µsec); pulse period == 15 ticks (15µsec) == 66.7KHz,
must be same as Laser 1

Laser 1 standby pulse width = 0

Laser On delay

(+/-), + shown

½ output
period

Laser 1
pulse width

Laser 2
pulse width

LASERMOD1

LASERMOD2

LASERON1

LASERFPK

Laser FPK position

(negative value)
Laser FPK length

Micro-vector start

Laser Modulation delay = 0

Pulse may be
truncated

Standby pulse period = 0
Laser ouput
pulse period

Laser 2 standby pulse width = 0

Servo Position Cmd

Micro-vectoring in

process

Laser Off delay

Laser Enable

timeout = 0

LASERENABLE

Laser Enable delay = 0
(minimum shown)

Page 58 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Nd:YAG Emulation Mode-3 Timing

Figure 41 Nd:YAG Emulation Mode-3 (Raylase Nd:YAG Mode-3)

This mode is very similar to Mode-2. The difference is that Laser FPK length can vary. Spectron lasers normally use
this type of timing.

Table 6: Example Nd:YAG Mode-3 Laser Configuration XML

Static Configuration XML Dynamic Configuration XML Example Description

<LsrEnaDly>0</LsrEnaDly> <set id=”LaserEnableDelay”>0</set> Maximizes throughput

<LsrEnaTmo>0</LsrEnaTmo> <set id=”LaserEnableTimeout”>0</set> Maximizes throughput

<LsrModDly>0</LsrModDly> <set id=”LaserModDelay”>0</set> No modulation delay required

<FpsPos>-18</FpsPos>
<set id=”LaserFPK”>-20, 18</set>

Example FPK length set to 18µsec with a minus 20µsec
shift relative to LASERON<FpsWidth>10</FpsWidth>

<TickleWidth1>0</TickleWidth1>
<set id=”LaserStandby”>1, 0, 0</set> 1 == laser; No tickle pulses required

<TickleFreq1>0</TickleFreq1>

<TickleWidth2>0</TickleWidth2>
<set id=”LaserStandby”>2, 0, 0</set> 2 == laser; No tickle pulses required

<TickleFreq2>0</TickleFreq2>

N/A <set id=”LaserOnDelay”>150</set> 150 laser timing ticks == 150µsec

N/A <set id=”LaserOffDelay”>100</set> 100 laser timing ticks == 100µsec

N/A <set id=”LaserPulse”>1, 8, 15</set>
Laser 1 operating; pulse width == 8 laser timing ticks
(8µsec); pulse period == 15 ticks (15µsec) == 66.7KHz

N/A <set id=”LaserPulse”>2, 10, 15</set>
Laser 2 operating; pulse width == 10 laser timing ticks
(10µsec); pulse period == 15 ticks (15µsec) == 66.7KHz,
must be same as Laser 1

Laser 1 standby pulse width = 0

Laser On delay

(+/-), + shown

Laser Off delay

½ output
period

Laser 1
pulse width

Laser 2
pulse width

LASERMOD1

LASERMOD2

LASERON1

LASERFPK

Laser FPK position
(negative value)

Laser FPK length

Micro-vector start

Laser Modulation delay = 0

Laser Enable
timeout

Pulse may be
truncated

Standby pulse period = 0
Laser ouput

pulse period

LASERENABLE

Laser Enable delay

Laser 2 standby pulse width = 0

Servo Position Cmd

Micro-vectoring in

process

Page 59 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

Nd:YAG Emulation Mode-4 Timing

Figure 42 Nd:YAG Emulation Mode-4 (Scanlab YAG 2)

In this mode, the LASERFK signal leading edge is coincident with the leading edge of LASERON and the generation
of the laser pulses is delayed to be coincident with the trailing edge of the LASERFPK signal.

Table 7: Example Nd:YAG Mode-4 Laser Configuration XML

Static Configuration XML Dynamic Configuration XML Example Description

<LsrEnaDly>0</LsrEnaDly> <set id=”LaserEnableDelay”>0</set> Maximizes throughput

<LsrEnaTmo>0</LsrEnaTmo> <set id=”LaserEnableTimeout”>0</set> Maximizes throughput

<LsrModDly>15</LsrModDly> <set id=”LaserModDelay”>15</set>
Laser modulation delayed by the same value as the
LASERFPK length

<FpsPos>0</FpsPos>
<set id=”LaserFPK”>0, 15</set>

Example FPK length set to 15µsec with no shift relative
to LASERON<FpsWidth>15</FpsWidth>

<TickleWidth1>0</TickleWidth1>
<set id=”LaserStandby”>1, 0, 0</set> 1 == laser; No tickle pulses required

<TickleFreq1>0</TickleFreq1>

<TickleWidth2>0</TickleWidth2>
<set id=”LaserStandby”>2, 0, 0</set> 2 == laser; No tickle pulses required

<TickleFreq2>0</TickleFreq2>

N/A <set id=”LaserOnDelay”>150</set> 150 laser timing ticks == 150µsec

N/A <set id=”LaserOffDelay”>100</set> 100 laser timing ticks == 100µsec

N/A <set id=”LaserPulse”>1, 8, 15</set>
Laser 1 operating; pulse width == 8 laser timing ticks
(8µsec); pulse period == 15 ticks (15µsec) == 66.7KHz

N/A <set id=”LaserPulse”>2, 10, 15</set>
Laser 2 operating; pulse width == 10 laser timing ticks
(10µsec); pulse period == 15 ticks (15µsec) == 66.7KHz,
must be same as Laser 1

Laser 1 standby pulse width = 0

Laser On delay
(+/-), + shown

Laser Off delay

½ output
period

Laser 1
pulse width

Laser 2
pulse width

LASERMOD1

LASERMOD2

LASERON1

LASERFPK

Laser FPK position = 0

Laser FPK length

Micro-vector start

Laser Modulation delay =

Laser FPK length

Laser Enable
timeout

Pulse may be

truncated
Standby pulse period = 0

Laser ouput
pulse period

LASERENABLE

Laser Enable delay

Laser 2 standby pulse width = 0

Servo Position Cmd

Micro-vectoring in

process

Page 60 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Nd:YAG Emulation Mode-5 Timing

Figure 43 Nd:YAG Emulation Mode-5 (Scanlab YAG 3)

This mode is very similar to emulation mode-4. The difference is that the start of laser pulse generation is 10µ sec after
the coincident leading edges of LASERON and LASERFPK.

Table 8: Example Nd:YAG Mode-5 Laser Configuration XML

Static Configuration XML Dynamic Configuration XML Example Description

<LsrEnaDly>0</LsrEnaDly> <set id=”LaserEnableDelay”>0</set> Maximizes throughput

<LsrEnaTmo>0</LsrEnaTmo> <set id=”LaserEnableTimeout”>0</set> Maximizes throughput

<LsrModDly>10</LsrModDly> <set id=”LaserModDelay”>10</set>
Laser modulation delayed by 15µsec relative to
LASERON

<FpsPos>0</FpsPos>
<set id=”LaserFPK”>0, 20</set>

Example FPK length set to 20µsec with no shift relative
to LASERON<FpsWidth>20</FpsWidth>

<TickleWidth1>0</TickleWidth1>
<set id=”LaserStandby”>1, 0, 0</set> 1 == laser; No tickle pulses required

<TickleFreq1>0</TickleFreq1>

<TickleWidth2>0</TickleWidth2>
<set id=”LaserStandby”>2, 0, 0</set> 2 == laser; No tickle pulses required

<TickleFreq2>0</TickleFreq2>

N/A <set id=”LaserOnDelay”>150</set> 150 laser timing ticks == 150µsec

N/A <set id=”LaserOffDelay”>100</set> 100 laser timing ticks == 100µsec

N/A <set id=”LaserPulse”>1, 8, 15</set>
Laser 1 operating; pulse width == 8 laser timing ticks
(8µsec); pulse period == 15 ticks (15µsec) == 66.7KHz

N/A <set id=”LaserPulse”>2, 10, 15</set>
Laser 2 operating; pulse width == 10 laser timing ticks
(10µsec); pulse period == 15 ticks (15µsec) == 66.7KHz,
must be same as Laser 1

Laser 1 standby pulse width = 0

Laser On delay

(+/-), + shown

½ output
period

Laser 1
pulse width

Laser 2
pulse width

LASERMOD1

LASERMOD2

LASERON1

LASERFPK

Laser FPK position = 0

Laser FPK length

Micro-vector start

Laser Modulation delay = 10µ sec

Pulse may be
truncated

Standby pulse period = 0

Laser ouput
pulse period

Laser 2 standby pulse width = 0

Servo Position Cmd

Micro-vectoring in

process

Laser Off delay

Laser Enable
timeout = 0

LASERENABLE

Laser Enable delay = 0
(minimum shown)

Page 61 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

Fiber Laser Timing

Figure 44 Fiber Laser Timing

Pulsed fiber lasers have recently become very popular because of a reduced cost of ownership relative to more
traditional YAG lasers. The IPG YLP series of lasers introduces a new control signal requirement that is met with the
LASERENABLE signal of the EC1000. The MO (Master Oscillator) signal defined in the IPG “B” interface
specification is intended to be driven by the Laser Enable signal of the EC1000. This signal is used to prepare the fiber
laser to generate ouput pulses and must be asserted at least 7ms before pulses are required. In addition, this signal
should be deasserted after laser emission in order to save power and extend laser life-time. Deassertion, however,
should not be done too quickly in order to avoid the overhead of restarting the laser. Deassertion is usually done after
all marking is done in a job. In the case of the EC1000, a timeout is provided to automatically deassert the
LASERENABLE signal after a period of inactivity.

In the above diagram notice that the LASERFPK signal is made inactive, i.e. it is not required by the interface. The
pulse width of the standby and active periods is set to 50% of the pulse period (square wave) since laser emission is
triggered on the leading edge of the pulse. Pulse width does not determine the level of power emitted, only the pulse
frequency (or period) determines average power. In practice, the pulse width to period ratio can be in a range of 0.1
to 0.9.

CAUTION! !

The IPG laser specifies that the pulse period must not be longer than a minimum value. The EC1000 does not protect
against incorrect programming; the application must prevent incorrect values from being used.

The IPG laser as a GUIDELASER signal to turn a pointer laser on/off. This signal can be controlled directly with the
LASERON2 signal if it is configured correctly (see the example below). In addition, a DLATCH signal is required to
latch the laser digital power value. A special mode of operation of the EC1000 laser digital output port can support
this feature, albeit at the sacrifice of the least significant bit of laser data. This configuration is specified below.

½ standby
period

Laser 1 standby
pulse width

Laser On delay
(+/-), + shown

Laser Off delay

½ output
period

Laser 1
pulse width

Laser 2
pulse width

LASERMOD1

LASERMOD2

LASERON1

LASERFPK

Laser FPK position = 0

Laser FPK length = 0

Micro-vector start

Laser Modulation delay = 0

Laser Enable

timeout

Standby pulse period Laser ouput

pulse period

LASERENABLE

Laser Enable delay

Laser 2 standby pulse width

Servo Position Cmd

Micro-vectoring in

process

Page 62 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Table 9: Example IPG Fiber Laser Configuration XML

Static Configuration XML Dynamic Configuration XML Example Description

<LsrEnaDly>7000</LsrEnaDly> <set id=”LaserEnableDelay”>7000</set> Minimum master oscillator startup time

<LsrEnaTmo>10000</LsrEnaTmo>
<set id=”LaserEnableTimeout”>10000</set>

Shut down laser master oscilator if no laser activity for
10msec

<LsrModDly>0</LsrModDly> <set id=”LaserModDelay”>0</set> No modulation delay required

<FpsPos>0</FpsPos>
<set id=”LaserFPK”>0, 0</set> No FPK required

<FpsWidth>0</FpsWidth>

<TickleWidth1>25</TickleWidth1>
<set id=”LaserStandby”>1, 25, 50</set>

Laser 1 stand-by; pulse width == 25 laser timing ticks
(25µsec); pulse period == 50 ticks (50µsec) == 20.0KHz <TickleFreq1>20</TickleFreq1>

<TickleWidth2>25</TickleWidth2>
<set id=”LaserStandby”>1, 25, 50</set> Laser 2; Settings the same as Laser 1

<TickleFreq2>20</TickleFreq2>

N/A <set id=”LaserOnDelay”>150</set> 150 laser timing ticks == 150µsec

N/A <set id=”LaserOffDelay”>100</set> 100 laser timing ticks == 100µsec

N/A
<set id=”LaserPulse”>1, 5, 10</set>

Laser 1 operating; pulse width == 5 laser timing ticks
(5µsec); pulse period == 10 ticks (10µsec) == 100.0KHz

N/A
<set id=”LaserPulse”>2, 5, 10</set>

Laser 2 operating; pulse width == 5 laser timing ticks
(5µsec); pulse period == 10 ticks (10µsec) == 100.0KHz,
must be same as Laser 1

<LON2Cfg>1</LON2Cfg>
N/A

Sets the mode of LASERON2 to be asserted when
LASERON1 would be asserted, but only if the laser is
disabled.

<LsrPwrMode>7bit</LsrPwrMode> N/A
Set the configuration of the laser digital power port so
the bit 0 can be tied to the DLATCH signal. This bit will
toggle 0->1->0 after each power change.

Page 63 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

6 Application Programming Interface
The host software Application Programming Interface (API) is supplied as Windows .NET assemblies and COM
objects that can be accessed from any suitable Microsoft Windows platform programming language, such as Visual
Basic, C++, C#, etc. For convenience, the API is defined using Visual Basic syntax.

The API makes extensive use of XML to pass parameters between a client application and the library. This technique
dramatically reduces the number of interface methods required to control an EC1000 module. The sections on Data
Definitions explicitly defines the XML interface requirements.

The API is divided into two components: the Broadcast API is used to identify EC1000 modules on the network and
the Session API is used to transfer configuration and job data to and from a selected controller.

6.1 API Implementation and Installation

The API is implemented in Microsoft’s C# language and is exposed as Windows .NET assemblies and as COM objects.
The DLLs and .tlb files that make up the interface are automatically installed and registered in the Window Registry
by a setup installation program on the software distribution CD. Installation details are in Appendix B.

In Visual Studio Version 6 programming languages, the API is accessed as COM objects that are imported into the
IDE trough the use of the COM object browser. The interfaces are identified as ILECBroadcast and ILECSession. In
languages based on Microsoft .NET technology, the interfaces are available as assemblies that can be referenced
within a project. Example code that illustrates the use of the API is on the distribution CD and installed on the
computer during API installation. The code examples are in a set of subdirectories in the Sample Programs directory
where the API software is installed.

6.2 Broadcast API

The Broadcast API is a set of methods that allow a client application to identify EC1000 controllers on the network
and to get relevant information about those controllers. On a configurable periodic basis, the EC1000 modules
broadcast identification packets out onto the network. The API captures broadcast messages from all available
EC1000 controllers and makes this information available to the client. This information is used by the client to
establish a communication session with a target controller. Sessions are used to send job data to a controller, and to
send/receive module configuration data. The methods used in sessions are described in the Session API section.

6.2.1 Attach Broadcast

Command ILecBroadcast.clientAttachBroadcast

Purpose Establish a connection to receive broadcast messages

Usage

ILecBroadcast.clientAttachBroadcast (

ByVal pstrMulticastAddress As
String,

// IP address to which the EC devices are broadcasting over (224.168.100.2)

ByVal pstrLocalAddress As String, // IP address of the local network adaptor that is connected to the EC1000
// modules.

ByVal piLocalPortNumber As Long, // Port number to which the EC devices are broadcasting over (11000)

ByRef piClientId As Long // Identifier of the successful connection made by the application

) As Unsigned Long

Explanation

This method is used by a client application to establish a connection to the broadcast mechanism of the EC1000. Once
connected, a client may receive broadcast messages from all EC1000 module on the network. The messages contain
information about the broadcasting module including the name, internet IP address, and other relevant data. This data is
retrieved through the use of Broadcast.GetBroadcastData().

pstrAddress and piPortNumber are values that are defined in the AdminConfig file (see section: Administration
Configuration)

pstrLocalAddress is required to differentiate which network adaptor is connected to the EC1000. The source code for a
sample utility function to get this information from the Windows operating system is provided in the Sample
Programs\LecTesterUtils directory.

Returns
0 - Success

1 - Could not establish a connection

See also
ILecBroadcast.clientDetachBroadcast(), ILecBroadcast.getLecServerCount(), ILecBroadcast.getLecServerList(),
ILecBroadcast.getBroadcastData()

Page 64 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

6.2.2 Detach Broadcast

6.2.3 Get Lec Server Count

6.2.4 Get Lec Server List

Command ILecBroadcast.clientDetachBroadcast

Purpose Terminate the connection to the broadcast mechanism

Usage

ILecBroadcast.clientDetachBroadcast (

ByVal piClientId As Long // Identifier of the connection made by the application

) As Unsigned Long

Explanation This method is used by a client application to terminate a connection to the broadcast mechanism of the EC1000.

Returns 0 - Success

See also ILecBroadcast.clientAttachBroadcast()

Command ILecBroadcast.getLecServerCount

Purpose Get embedded controller device data

Usage

ILecBroadcast.getLecServerCount(

ByVal piClientId As Long, // Identifier of the connection made by the application

ByRef piServerCount As Long, // The number of EC1000 devices that were identified

) As Unsigned Long

Explanation

Once a connection to the broadcast mechanism has been established, broadcast messages are then received and a table of
available modules is built by the API. This method returns the number of distinct EC1000 modules that have transmitted
valid broadcast packets since the Broadcast.clientAttachBroadcast() method was called.

Because of the asynchronous and periodic nature of the broadcast transmissions, it may take some time before all EC1000
controllers are recognized and reported via this method. Several successive calls may yield different results until enough
time has passed to account for the longest broadcast interval. The broadcast interval is configured using the
Session.requestFixedData() and Session.setFixedData() methods with the AdminConfig data as an argument.

Returns
0 – Success

4 – Illegal client identifier

See also
ILecBroadcast.clientAttachBroadcast(), ILecBroadcast.clientDetachBroadcast(), ILecBroadcast.getLecServerList(),
ILecBroadcast.getBroadcastData()

Command ILecBroadcast.getLecServerList

Purpose Get embedded controller device data

Usage

ILecBroadcast.getLecServerList(

ByVal piClientId As Long, // Identifier of the connection made by the application

ByRef piServerCount As Long, // The number of EC1000 devices that were identified

ByRef pstrFriendlyName As String // The names of the EC1000 devices that were identified. The string returned
// contains an XML representation of the data.

) As Unsigned Long

Explanation

This method returns a list of identifiers for the EC1000 modules for which valid broadcast packets have been received. One
of the friendly names can used in the method Broadcast.getBroadcastData() to obtain more extensive identification data.

Because of the asynchronous and periodic nature of the broadcast transmissions, it may take some time before all EC1000
controllers are recognized and reported via this method. Several successive calls may yield different results until enough
time has passed to account for the longest broadcast interval. The broadcast interval is configured using the
Session.requestFixedData() and Session.setFixedData() methods with the AdminConfig data as an argument.

Returns

0 – Success

4 – Illegal client identifier

The friendly name list contains an XML representation of the data. For example:

<LecList>

 <Lec name=”EC_Alpha” ip=”192.168.42.30” mac=”00:50:C2:4F:A0:01” />

 <Lec name=”EC_Beta” ip=”192.168.42.31” mac=”00:50:C2:4F:A0:06” />

</LecList>

See also
ILecBroadcast.clientAttachBroadcast(), ILecBroadcast.clientDetachBroadcast(), ILecBroadcast.getLecServerCount(),
ILecBroadcast.getBroadcastData

Page 65 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

6.2.5 Get Broadcast Data

Broadcast Data Definitions

The both the Broadcast and Session APIs uses a data type code to specify the data that the application is requesting
or sending. This is the piDataType argument in the methods Broadcast.getBroadcastData(),
Session.requestFixedData(), and Session.sendFixedData(). All data types support an XML representation of the data.

In the following data description tables, example data is shown in bold font. Although in XML all data is expressed
as text, the actual data type interpretation is application dependent. For the EC1000, all data has an expected type
interpretation, thus the tables contain a collumn that indicates the data type that is intended for the particular data
element. The data types are identified as follows:

All the data retrievable using the Broadcast.getBroadcastData method is read-only.

Command ILecBroadcast.getBroadcastData

Purpose Get embedded controller device data

Usage

ILecBroadcast.getBroadcastData(

ByVal piClientId As Long, // Identifier of the connection made by the application

ByVal pstrFriendlyName As String, // Name of the EC device

ByVal piDataType As Long, // The type of EC device data (see Broadcast Data Definitions section)

ByRef piData As String // The data requested from the EC device. The string returned contains an

// XML representation of the data requested by piDataType

) As Unsigned Long

Explanation
This function is used by a client application to retrieve various types of data related to the specified EC1000 module. This
data is defined in the Data Types section.

Returns

0 - Success

4 – Illegal client identifier

8 – Server name not found

See also
ILecBroadcast.clientAttachBroadcast(), ILecBroadcast.clientDetachBroadcast(), ILecBroadcast.getLecServerCount(),
ILecBroadcast.getLecServerList()

Broadcast Data Type piDataType Value Code

System Information 0x01

Status Information 0x07

Type Identifier Type Description Range

STR ASCII String <= 256 characters

U16 Unsigned 16-bit Integer 0 <-> 65535

I16 Signed 16-bit Integer -32768 <-> +32767

U32 Unsigned 32-bit Integer 0 <-> 4,294,967,295

I32 Signed 32-bit Integer -2,147,483,648 <-> 2,147,483,647

FLT Floating point IEEE 64-bit Floating Point range

BOOL Boolean true, false

Page 66 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

System Information

Purpose The system information data contains device, hardware, and connection information

Definition

XML Tag XML Example Text Type Description

<Data type=”SysInfoData” rev=”1.0”>

MSN <MSN>EC1000-000005</MSN> STR Unique board manufacturing code.

PVer <PVer>0420</PVer> STR Version of the platform software.

AVer <AVer>1.0.0</AVer> STR Version of the EC1000 embedded server software.

ObjExtVer <ObjExtVer>cti.1.0</ObjExtVer> STR Version of the on-board object extension library

FPGAFirmVer <FPGAFirmVer>20060131</FPGAFirmVer> STR Version of the FPGA firmware that is loaded.

StateCode <StateCode>1</StateCode> U32 Connection status of EC1000. The state-codes are:

LastError <LastError>0</LastError> I32 Last system error. For instance, 9001 represents a
recent abort operation had completed.

FreeTempStorage <FreeTempStorage>7805</
FreeTempStorage>

U32 The amount of free storage in non-persistent memory

in Kilo Bytes.

PermStoragePath <PermStoragePath>Disk</
PermStoragePath>

STR The path to the root of persistent memory.

FreePermStorage <FreePermStorage>29616</
FreePermStorage>

U32 The amount of free storage in persistent memory in

Kbytes.

FreeUSBStorage <FreeUSBStorage>100220</FreeUSBStorage> U32 The amount of free storage in Kbytes on the USB Flash

device if present on the system.

MAC <MAC>00:50:C2:4F:A0:00</MAC> STR Hardware address.

NetMask <NetMask>255.255.255.0</NetMask> STR Network mask used by EC1000. This value is either

manually set, or provided by a DHCP or DNS server.

NetAssign <NetAssign>1</NetAssign> I32 Network assignment is either manual, provided by

DHCP, or provided by DNS.

IP <IP>192.168.2.1</IP> STR IP address used by EC1000. This value is either
manually set, or provided by a DHCP or DNS server.

This IP address is used in the Session.loginSession

method to connect to a specific EC1000.

ConnectIP <ConnectIP>192.168.2.65</ConnectIP> STR The client IP address that is currently connected to
EC1000.

FriendlyName <FriendlyName>EC_Alpha</FriendlyName> STR Name used by EC1000.

ConnectJob <ConnectJob>Hubble</ConnectJob> STR The job name that is currently marking.

Port <Port>12200</Port> U32 The network port currently in use by the Job Session.

HSN <HSN>HEAD-0000023</HSN> STR Marking head serial number.

</Data>

Explanation
This data define the basic characteristics of the controller, especially that required to properly communicate with the controller. It
contains a combination of live dynamic data, and static data that is stored on the Flash memory of the device. All data is read-only.

See also ILecBroadcast.getBroadcastData()

State Value Meaning

Available 0 Available for connection

ClientTCP 1 Connected to network client

ClientSerial 2
Connected to serial client
(future)

ClientLocal 4 In local mode

Restarting 8 Server restarting

Waiting 16 Waiting for server startup

Pausing 32 Job paused

WaitingTCP 64 Waiting for TCP connection

NotAvailable 128
Server is in a transitional
state and unavailable

Page 67 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

Status Information

Purpose The status information data contains the current status maintained by the marking engine

Definition

XML Tag XML Example Text Type Description

Data <Data type=”StatInfoData” rev=”1.0”> StatInfoData identifier

XPosAck <XPosAck>true</XPosAck> BOOL Boolean passed from the X axis galvo servo controller indicating
that the servo is “settled” at the commanded position. Note that

this feature is not supported by all galvo controllers.

YPosAck <YPosAck>true</YPosAck> BOOL Boolean passed from the Y axis galvo servo controller indicating

that the servo is “settled” at the commanded position. Note that
this feature is not supported by all galvo controllers

XPos <XPos>-2489</XPos> I16 The value of the current ideal commanded X position prior to

lens correction.

YPos <YPos>5510</YPos> I16 The value of the current ideal commanded Y position prior to

lens correction.

XActPos <XActPos>-2489</XActPos> I16 The value of the actual X position after lens correction.

YActPos <YActPos>5510</YActPos> I16 The value of the actual Y position after lens correction.

XTemp <XTemp>29.3</XTemp> FLT The value of the temperature in Celsius of the X servo. Note that

this feature is not supported by all galvo controllers.

YTemp <YTemp>28.5</YTemp> FLT The value of the temperature in Celsius of the Y servo. Note that

this feature is not supported by all galvo controllers.

ContrlTemp <ContrlTemp>32.0</ContrlTemp> FLT The value of the temperature in Celsius of the EC1000 controller.

XPower <XPower>true</XPower> BOOL Boolean determining if the X servo is powered and ready. Note

that this feature is not supported by all galvo controllers.

YPower <YPower>true</YPower> BOOL Boolean determining if the Y servo is powered and ready. Note

that this feature is not supported by all galvo controllers.

Interlock <Interlock>4</Interlock> U16 This number represents a bitmask that encodes the current state
of the system interlock switches. A “1” in the bit position means

that the interlock has been broken in that position. Bits[3..0]

represent the state of the signals INTERLOCK[4..1]

CurrentDIO <CurrentDIO>0x1023</CurrentDIO> U16 This number represents a bitmask that encodes the current state
of the system digital I/O lines.

bits[3..0] == USERIN[4..1]

bit[5..4] == SPAREIN, STRTMRK
bits[9..6] == INTERLOCK[4..1]

bits[13..10] == USEROUT4..1]

bits[17..14] == SPAREOUT, LEC_ERROR, LEC_BUSY,
MRKINPRG

JobMarker <Jobmarker>35</JobMarker> U16 This number is a copy of the current job marker data register

that can be set by an application job via the JobMarker

instruction.

JobDataCntr <JobDataCntr>32336</JobDataCntr> U32 This number is a copy of the current job data counter. This
counter is cleared whenever the marking engine enounters a

StartJob instruction and can also be initialized by an application

job via the JobDataCounter instruction. This counter represents
the number of 32-bit data elements that the marking engine has

processed since the last time this value was reset.

</Data> End StatInfoData

Explanation This data represents the live status of the device. All data is read-only.

See also ILecBroadcast.getBroadcastData()

Page 68 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

6.3 Session API

Once all EC1000 controllers are identified using the Broadcast API, individual controllers may be selected for
subsequent communication. The Session API provides the methods to connect to a target EC1000, to get and set
configuration data, to send job data, and to manage asynchronous communcations events generated by the controller.

6.3.1 Session Login

Session are established via a login operation to the target E1000.

6.3.2 Session Logout

Sessions with a connected E1000 are terminated via a logout operation.

Command ILecSession.loginSession

Purpose Connect to an EC device by establishing a session

Usage

ILecSession.loginSession(

ByVal pstrLocalAddress As String, // IP address of the local network adaptor that is connected to the EC1000

// modules.

ByVal pstrAddress As String, // TCP/IP Address of the EC1000 to login. This is the “ip” attribute of the
// EC1000 selected by the application and identified in the

// Broadcast.getLecServerList data

ByVal piPortNumber As Long, // Network Port on the EC1000 supporting the session. This is the <Port>

// value of the SysInfoData returned from the Broadcast.getBroadcastData call
// for the selected EC1000

ByVal pstrUsername As String, // Reserved for future use

ByVal pstrPassword // Reserved for future use

ByVal piTimeout As Unsigned Long // Duration for attempting call in seconds

) As Unsigned Long

Explanation

Once EC1000 modules have been identified via the use of Broadcast API, a communications session can be opened between
the client and a selected target EC1000. Sessions are established via a call to this method. Multiple sessions to different target
EC1000 controllers are made by instantiating separate Session objects. A target EC1000 controller may only serve one client
session at a time.

pstrLocalAddress is required to differentiate which network adaptor is connected to the EC1000. The source code for a
sample utility function to get this information from the Windows operating system is provided in the Sample
Programs\LecTesterUtils directory.

Returns

0 – Success

2 – Could not establish a connection

16 – Could not start event handling

18 – Cancelled by user

24 - A timeout occured waiting for the operation to complete

See also
ILecSession.logoutSession(), ILecSession.requestFixedData(), ILecSession.sendFixedData(), ILecSession.sendSteamData(),
ILecSession.sendPriorityData()

Command ILecSession.logoutSession

Purpose Disconnect an EC device session

Usage

ILecSession.logoutSession(

ByVal puiTimeout As Unsigned Long // Duration for attempting call in seconds

) As Unsigned Long

Explanation

When session communication is completed, the client closes the session via a call to this method. Once the session is closed,
another new session may be opened to the same or other EC1000 devices via a call to Session.loginSession().

Note that if a job was streamed out to the EC1000 and was still executing when the logout was invoked, the job will be
immediatley aborted.

Returns 0 – Success

See also ILecSession.loginSession()

Page 69 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

6.3.3 Session Request Fixed Data

The EC1000 has the ability to store a large amount of data in non-volatile Flash memory. This data can be
configuration data or job data. Configuration data is classified a “fixed” data, i.e. it has a lifetime that spans boot-up
cycles of the controller. Some of the configuration data is set at the factory and is considered permanent read-only
information. Other data is used by the controller at boot-up to properly initialize the hardware interfaces, and still
other data is provided for the convenience of the application programmer to indicate the capabilities of the integrated
system. All data is defined in the Session Fixed Data Definitions section of this manual.

The fixed data stored on the EC1000 is accesed by requesting it from the controller..

Session Fixed Data Definitions

The Session API uses a data type code to specify the data that the application is requesting or sending. This is the
piDataType argument in the methods Session.requestFixedData(), and Session.sendFixedData(). All data types
support an XML representation of the data.

Command ILecSession.requestFixedData

Purpose Retrieve fixed data from an EC device session

Usage

ILecSession.requestFixedData(

ByVal piDataType As Long Identifier of the requesting data. See Session Fixed Data Definitions section.

ByVal pstrStorageName As String // File name of the data file. The file path is constructed by the API as follows:

// <PermStoragePath>\LEC\Config\<pstrStorageName>.xml

// where <PermStoragePath> is defined in the SysInfoData for the selected
// EC1000 and <pstrStorageName> is the name of the selected fixed data file

// as stored on the EC1000 without the “.xml” extension.

ByRef pstrData As String, // Requested data

ByVal puiTimeout // Duration for attempting call in seconds

) As Unsigned Long

Explanation

EC1000 modules are autonomous devices that contain information that configures the module at boot-up for the particular
hardware arrangement of the marking head. This information defines such things as the laser interface, the lens
characteristics, and the optical system correction tables. An application can access this information by specifying the data
type using the piDataType argument and providing a file name for the data as stored on the EC1000. The information is
returned as an XML string which must be decoded by the application. The XML specification for the different data types is
defined in the Session Fixed Data Definitions section.

The AdminConfig.xml data file (see section Administration Configuration) contains an element definition <ControlFile>
naming the master EC1000 controller configuration file. Within this file are element definitions naming the currently active
lens, laser, correction table, and user definitions files. These names are typically used as the <pstrStorageName> argument
above, although other files may be accessed on the EC1000 file system if those file names are known and the files are of the
proper type.

Returns

0 – Success

10 – Network connection not established

11 – Requested data not found on EC device

12 – Location of data not found on EC device

13 – Cannot access the remote location where the data resides on the EC device

14 – Cannot access the local destination location where the data is written to

15 – The data type requested is unknown

24 - A timeout occured waiting for the operation to complete

See also ILecSession.sendFixedData()

Fixed Data Type Data ID

Controller Configuration 0x05

Laser Configuration 0x06

Lens Configuration 0x02

Correction Table 0x0D

User Configuration 0x0F

Performance Adjustments 0x10

Admin Configuration 0x0A

Page 70 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

In the following data description tables, example data is shown in bold font. Although in XML all data is expressed
as text, the actual data type interpretation is application dependent. For the EC1000, all data has an expected type
interpretation, thus the tables contain a collumn that indicates the data type that is intended for the particular data
element. The data types are identified as follows:

All data that can be retrieved with the Session.requestFixedData() method is changable with the
Session.sendFixedData() method. This powerful interface permits full configurability of the EC1000 controller. Most
of the elements in the data tables are set by a system integrator to provide information for a marking application
programmer to configure the user-interface and control interfaces as a function of the controller/system
configuration. This data is not intendend to be changed after it has been set by an integrator.

In addition to the integrator data, there is a table of data that is intended to be set by a system administrator. This data
can be adapted at the end-customer site to meet specific networking requirements. This data is also intended to be
read-only from a marking application perspective.

Most of the properties defined in the configuration data tables are provided as a convenience to the application
programmer in adapting the software for various target configurations. These properties are flagged with the letter
“A” in the Use column. Some of the data is used by the controller at boot-up to configure the laser control signals.
This data is flagged with the letter “C” in the Use column. All of the data is persistent on the controller and changeable
via the API.

Administration Configuration

Administration Configuration data defines the base behavior of the module. Most of the items defined here are used
to configure the network parameters and diagnostic tracing of the server software. The <ControlFile> tag is important
in that it defines the name of the controller configuration file which contains pointers to other files that define the
configuration of the lens and laser among other things.

Type Identifier Type Description Range

STR ASCII String <= 256 characters

U16 Unsigned 16-bit Integer 0 <-> 65535

I16 Signed 16-bit Integer -32768 <-> +32767

U32 Unsigned 32-bit Integer 0 <-> 4,294,967,295

I32 Signed 32-bit Integer -2,147,483,648 <-> 2,147,483,647

FLT Floating point IEEE 64-bit Floating Point range

BOOL Boolean true, false

HEX Unsigned 16-bit integer 0x0000 <-> 0xFFFF

Page 71 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

Controller Configuration

The Controller Configuration file is the master control file for defining the startup configuration of the controller. It
contains pointers to other configuration files that deal with specific elements of the system such laser timing,
correction tables, lens identification, user adjustments, etc. The file names referenced in the table are XML file names
with the .xml extension suppressed. The files are in the <PermStoragePath>\LEC\Config directory on the EC1000.
PermStoragePath is the value reported in the broadcasted SystemData packets.

Purpose
The controller configuration describes to the combination of components that make up the EC device

XML Tag XML Example Text Type Use Description

Definition

Data <Data type=”ControlConfigData” rev=”1.0”> ControlConfigData identifier

CorrFile1 <CorrFile1>CORRTAB1</CorrFile1> STR C The name of correction table 1 file

CorrFile2 <CorrFile2>CORRTAB2</CorrFile2> STR C The name of correction table 2 file

LensFile <LensFile>LENSFILE2</LensFile> STR C The name of the lens configuration file

LaserFile <LaserFile>LASERFILE4</LaserFile> STR C The name of the laser configuration file

UserFile <UserFile>MYCONFIGFILE</UserFile> STR C The name of the user configuration file

PerformanceFile <PerformanceFile>PADJUST</
PerformanceFile>

STR C The name of the performance adjustments file

MotfCapable <MotfCapable>true</MotfCapable> BOOL A System is Mark On The Fly (MOTF) capable
(true)

MotfEncoderCal <MotfEncoderCal>24.23</
MotfEncoderCal>

FLT C MOTF calibration factor. Relates the encoder
counts to laser positioning bits (bits/count)

MotfCalGain <MotfCalGain>1.0</MotfCalGain> FLT A MOTF digital gain factor. Used as a fine-tuning
scalar adjustment of MotfEncoderCal.

MotfMode <MotfMode>0</MotfMode> U16 C MOTF operational mode

0 - Use encoder
1 - Simulate endoder

MotfDirection <MotfDirection>0</MotfDirection> I16 C MOTF orientation and direction in degrees

0 - left to right in the X axis
90 - bottom to top in the Y axis
180 - right to left in the X axis
270 - Top to bottom in the Y axis

AxisDACRange <AxisDACRange>0x1</AxisDACRange> HEX C Bit-field encoded values that set the output
votage range of the X and Y DACs and the Z
DAC as follows:

Bits [1..0] encode the X and Y axis

Bits [3..2] encode the Z axis

0 - ±2.5V single ended, 5V differential
1 - ±5V single ended, 10V differential
2 - ±10V single ended, 20V differential

LaserPipelineDelay <LaserPipelineDelay>1500</
LaserPipelineDelay>

U16 C The time in laser timing ticks that all laser signals
are delayed relative to micro-vector generation

IntlockConfig <IntlockConfig>0x1707</IntlockConfig> HEX C Interlock configuration control. There are two
fields in the argument: Polarity and Enable:

Polarity

Bits [3..0] represent the interlock signals
INTLOCK[4..1]. A “1” corresponds no
current flowing through the interlock optical
isolator being the “asserted” state.

Enable

Bits [11..8] represent the interlock signals
INTLOCK[4..1]. A “1” enables a transition of
the interlock signal going from the unasserted
to the asserted state togenerate an “Interlock”
exception and shut down an active job
provided that bit 12 is also asserted.
Bit [12] is the master enable bit for the
interlock function. If this bit is set, then all
enabled interlock signals should be de-
asserted at power-up time or else an
immediate “Interlock” exception will be
generated when this parameter is processed.
All of the Enable bits can also be manipulated
using the SetInterlockEnable priority data
message.

If an interlock that is enabled is tripped, the
condition that caused the trip must be cleared
and an “Abort” priority message sent before a
job can be restarted without generating another
“Interlock” exception.

The current state of the interlock physical signals
can be seen in the Broadcast Status data as
element <Interlock>

Page 72 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Definition

ServoConfig <ServoConfig>0x4<ServoConfig> HEX C Servo configuration control. The value is bit-
field encoded as follows:

.

JumpPeriodOffset <JumpPeriodOffset>0</JumpPeriodOffset> I32 C Reserved for future use.

MarkPeriodOffset <MarkPeriodOffset>0</MarkPeriodOffset> I32 C Reserved for future use.

</Data> End ControlConfigData

Explanation

These values are normally set by the integrator and not intended to be altered by a marking application.

Note that when the Controller Configuration is sent to EC1000, the correction table and laser configurations referenced are also applied
to the controller. Consequently, whenever these configurations are updated, the current correction table is always reset to CorrFile1.

Detailed Motf operation is controlled through instructions passed as part of the job stream and is not a “mode” of the controller.

See Also ILecSession.requestFixedData(), ILecSession.sendFixedData()

Purpose
The controller configuration describes to the combination of components that make up the EC device

XML Tag XML Example Text Type Use Description

Name Value Definition

X&Y SERVO_EN polarity 0x0001 0=active high, 1=active low

Z SERVO_EN polarity 0x0002 0=active high, 1=active low

Enable X, Y Servos 0x0004 1=enable servos, 0=disable

Enable Z Servo 0x0008 1=enable servos, 0=disable

X&Y SERVO_RDY polarity 0x0010 0=active high, 1=active low

Z_SERVO_RDY polarity 0x0020 0=active high, 1=active low

X, Y Not-ready exception

enable

0x0040 1=enable exception event

generation is X or Y servo
becomes not ready

Z Not-ready exception

enable

0x0080 1=enable exception event

generation if Z servo

becomes not ready

Page 73 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

Laser Configuration

Purpose
The laser configuration defines the properties of the laser in use with the EC device

XML Tag XML Example Text Type Use Description

Definition

Data <Data type=”LaserConfigData” rev=”1.0”> LaserConfigData identifier

LsrName <LsrName>IPC002</LsrName> STR A The name of the laser

FixedFreq <FixedFreq>true</FixedFreq> BOOL A Laser is only capable of a fixed frequency setting (true), or
capable of variable frequency settings (false)

FixedPW <FixedPW>true</FixedPW> BOOL A Laser is only capable of a fixed pulse width setting (true), or
capable of variable pulse width settings (false)

FixedWatts <FixedWatts>true</FixedWatts> BOOL A Laser is only capable of a fixed ouput power setting (true), or
capable of variable ouput power settings (false)

WattsUnits <WattsUnits>true</WattsUnits> BOOL A Laser power units are in Watts (true), or % duty-cycle (false)

Pulse <Pulse min=”2” max=”65535”/> U16 A pulse width range supported by the laser (µsec)

Bits <Bits min=”0” max=”255”/> U16 A Binary value range for lasers with digital power control

ExtPwrCtrl <ExtPwrCtrl>false</ExtPwrCtrl> BOOL A Laser power is controllable via an external knob (true)

UseExtPwrCtrl <UseExtPwrCtrl>false</
UseExtPwrCtrl>

BOOL A Application is configured to use external power control

(true)

VisPtr <VisPtr>false</VisPtr> BOOL A Laser has a visible pointer integrated into it (true)

Duty <Duty min=”2” max=”90”/> U16 A Duty cycle range of the laser pulses (%)

LsrType <LsrType>1</LsrType> U16 A Application definable value to identify a laser type

Freq <Freq min=”2” max=”100”/> U16 A Pulse frequency range sustainable by the laser (KHz)

Watts <Watts min=”1” max=”15”/> U16 A Wattage range producible by the laser

Volts <Volts min=”1” max=”10”/> U16 A Analog power level voltage range sustainable by the laser.
The EC1000 is capable of 0-10 Volts output.

Interlock <Interlock>IPCIntlocks.txt</Interlock> STR A The name of a file on the host platform that contains
instructions on how to clear an interlock break

LENAHigh <LENAHigh>false</LENAHigh> BOOL C LASERENABLE signal is active high (true) or active low
(false)

LONHigh <LONHigh>false</LONHigh> BOOL C LASERON1 signal is active high (true) or active low (false)

LON2High <LON2High>false</LON2High> BOOL C LASERON2 signal is active high (true) or active low (false)

LON2Cfg <LON2Cfg>1</LON2Cfg> U16 C Sets the mode of operation of LASERON2

0 - LASERON2 == !LASERON1
1 - LASERON2 == LASERON1 & !LasersEnabled
2 - LASERON2 == !LasersEnabled
3 - LASERON2 == Asserted all of the time

Lasers are enabled or disabled via the streaming job
command <set id=”EnableLaser”>{false,true}</set>

LMOD1High <LMOD1High>false</LMOD1High> BOOL C LASERMOD1 signal is active high (true) or active low (false)

LMOD2High <LMOD2High>false</LMOD2High> BOOL C LASERMOD2 signal is active high (true) or active low (false)

LFPKHigh <LFPKHigh>false</LFPKHigh> BOOL C LASERFPK signals is active high (true) or active low (false)

LsrEnaDly <LsrEnaDly>4000</LsrEnaDly> U16 C The time require for enabling the laser prior to actual use
(usec). Set the time that the signal LASERENABLE is
asserted prior to a marking operation.

LsrEnaTmo <LsrEnaTmo>4000</LsrEnaTmo> U16 C The time that the signal LASERENABLE will remain
asserted after a marking operation. If a subsequent marking
operation is started prior to the expiration of this time, then
LASERENABLE will remain asserted and the marking
operation will begin immediately without the cost of another
LsrEnaDel.

LsrModDly <LsrModDly>20</LsrModDly> U16 C The time from the assertion of LASERON to the emission of
laser pulses.

LsrTiming <LsrTiming>50</LsrTiming> U16 C The number of 20ns intervals that make up a laser timing
“tick”

LsrPwrDly <LsrPwrDly>1700</LsrPwrDly> U16 C The time required after laser power is changed until the laser
power has settled (usec). Used when constructing jobs that
manipulate the laser power.

LsrPwrMode <LsrpwrMode>8bit</LsrPwrMode> STR C Sets the mode of the digital power level port

8bit - The laser power setting is driven as an 8-bit word
7bit - The laser power setting is driven as a 7-bit word.
The least significant bit is redefined as a data strobe
going high for 100usec and then low after a data word
settling time of 100us

FpsPos <FpsPos>30</FpsPos> U16 C The time between the assertion of the LASERFPK signal and
the generation of LASERMOD pulses (µsec)

FpsWidth <FpsWidth>0</FpsWidth> U16 C The width of the LASERFPK pulse (µsec)

TickleWidth1 <TickleWidth1>5</TickleWidth1> U16 C The width of the LASERMOD1 pulses during standby (µsec)

TickleFreq1 <TickleFreq1>1</TickleFreq1> U16 C The frequency of the LASERMOD1 pulses during standby
(KHz)

TickleWidth2 <TickleWidth2>5</TickleWidth2> U16 C The width of the LASERMOD2 pulses during standby (µsec)

Page 74 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Lens Configuration

Definition

TickleFreq2 <TickleFreq2>1</TickleFreq2> U16 C (Future) The frequency of the LASERMOD2 pulses during
standby (KHz). Currently TickleFreq1 and TickleFreq2 must
be set equal to each other

InitBits <InitBits>1</InitBits> U16 C Initialization value for lasers with digital power control

InitLaser <InitLaser>false</InitLaser> BOOL C Laser requires explicit initialization via serial comm (true)

InitType <InitType>0</InitType> U16 C Laser communications type: 0 = RS-232 Serial, 1 = Ethernet

BaudRate <BaudRate>0</BaudRate> U32 C Baud rate of the serial interface on the laser

InitStrDelim <InitStrDelim>”,”</InitStrDelim> CHR C Delimiter character separating command and argument
tokens in the InitString

InitStrEOL <InitStrEOL>”\n”</InitStrEOL> CHR C Line termination character used by the laser command
interpreter

InitStrings <InitStrings>
 <InitString>ab</InitString>
 <InitString>cd</InitString>
 <InitString>ef</InitString>
</InitStrings>

STR C A list of initialization strings to be sent to the laser. The list

may be arbitrarilly long

DeinitStrings <DeinitStrings>
 <DeinitString>zy</DeinitString>
 <DeinitString>xw</DeinitString>
 <DeinitString>vu</DeinitString>
</DeinitStrings>

STR C A list of deinitialization strings to be sent to the laser. The
list may be arbitrarilly long

CorrTable <CorrTable>
 <Entry>0</Entry>
 <Entry>1</Entry>
 . . .
 <Entry>255</Entry>
</CorrTable>

I8 C A list of laser power linearization values. Laser power has a logical

range of 0-255 and as a power change is requested, the logical

power value is used to index this table and the selected entry is
used as the actual “corrected’ value. (Future)

</Data> End LaserConfigData

Explanation These values are normally set by the integrator and not intended to be altered by a marking application.

See Also ILecSession.requestFixedData(), ILecSession.sendFixedData()

Purpose The lens configuration describes the properties of the lens in use with the EC device.

XML Tag XML Example Text Type Use Description

Definition

Data <Data type="LensConfigData" rev=”1.0”> LensConfigData identifier

LensName <LensName>S4LFT0163</LensName> STR A Used by the head integrator to identify a particular lens
model

CalFlag <CalFlag>false</CalFlag> BOOL A Used by an application to indicate that this lens can be
calibrated.

KFactor <KFactor>500</KFactor> U32 A Scale factor relating the X and Y galvo command signals to
the distance traveled by the laser (bits/mm)

ZMode <ZMode>0</ZMode> U16 A Specifies the Z axis operational mode:

ZKFactor <ZKFactor>500</ZKFactor> U32 A Scale factor relating the Z (focus) actuator command
signals to the focal plane displacement (bits/mm)

FocalLen <FocalLen>163</FocalLen> U32 A Focal length of the lens (mm)

Aperture <Aperture>15</Aperture> U32 A Laser beam diameter entering the lens (mm)

Tbl1XOff <Tbl1XOff>0</Tbl1XOff> I16 C X axis offset to be applied to correction table 1 (bits)

Tbl1YOff <Tbl1YOff>0</Tbl1YOff> I16 C Y axis offset to be applied to correction table 1 (bits)

Tbl1XGain <Tbl1XGain>1.0</Tbl1XGain> FLT C X axis gain to be applied to correction table 1

Tbl1YGain <Tbl1YGain>1.0</Tbl1YGain> FLT C Y axis gain to be applied to correction table 1

Tbl1Rotation <Tbl1Rotation>0.0</Tbl1Rotation> FLT C Field rotation to be applied to correction table 1 (degrees)

Tbl2XOff <Tbl2XOff>0</Tbl2XOff> I16 C X axis offset to be applied to correction table 2 (bits)

Tbl2YOff <Tbl2YOff>0</Tbl2YOff> I16 C Y axis offset to be applied to correction table 2 (bits)

Tbl2XGain <Tbl2XGain>1.0</Tbl2XGain> FLT C X axis gain to be applied to correction table 2

Tbl2YGain <Tbl2YGain>1.0</Tbl2YGain> FLT C Y axis gain to be applied to correction table 2

Tbl2Rotation <Tbl2Rotation>0.0</Tbl2Rotation> FLT C Field rotation to be applied to correction table 2

</Data> End LensConfigData

Purpose
The laser configuration defines the properties of the laser in use with the EC device

XML Tag XML Example Text Type Use Description

Name Value Description

2D 0 No Z axis is present in the system and only X and Y vector data is used.

3D 1 Z axis is present and the Z position is the Z axis job data adjusted by the

interpolated value from the Z axis component of the currently active
correction table. The Z axis moves smoothly to the target position over

the same time period it takes to move to the X-Y target position.

Page 75 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

Correction Tables

User Configuration

Explanation

These values are normally set by the integrator and not intended to be altered by a marking application.

Note that the Tbl{1,2} offset, gain and rotation factors are intended to be used by the integrator to correct for system alignment issues
and for the effects of the different wavelengths of light used for marking (table 1) and pointing (table 2). User level adjustments to the

imaging field are performed through the use of the UserConfigData. The order of application of the factors is as follows:

See Also ILecSession.requestFixedData(), ILecSession.sendFixedData()

Purpose The correction table contains values to adjust laser location based on the lens distortion and laser galvo configuration

Definition

XML Tag XML Example Text Type Description

Data <Data type="CorrTableData" rev=”1.0”> CorrTableData dentifier

x-axis <x-axis>203,195,161,…,-174,-190,-201</x-axis> I32 X-Axis Correction Data

4225 values defining the x-axis correction starting in the
lowest negative coordinate (lower left Cartesian quadrant) to
the highest positive coordinate (upper right Cartesian
quadrant).

y-axis <y-axis>337,323,288,…,-288,-323,-337</y-axis> I32 Y-Axis Correction Data

4225 values defining the Y-axis correction starting in the
lowest negative coordinate (lower left Cartesian quadrant) to
the highest positive coordinate (upper right Cartesian
quadrant).

z-axis <z-axis>2,2,1,…,4,5,5</z-axis> I32 Z-Axis Correction Data

4225 values defining the Z-axis correction starting in the
lowest negative coordinate (lower left Cartesian quadrant) to
the highest positive coordinate (upper right Cartesian
quadrant).

</Data> End CorrTableData

Explanation
Correction table data may be changed by an application, but is normally not. This data is usually provided by a marking head
integrator using the characteristics of the lens and laser galvo configuration. Correction table data may also be sent to the EC1000
using the sendStreamData() method. In this case, however, the data is not persistent and will be lost after session logout or reboot.

See Also ILecSession.requestFixedData(), ILecSession.sendFixedData()

Purpose The User Confguration table contains values that are completely under the control of a marking application

Definition

XML Tag XML Example Text Type Description

Data <Data type="UserConfigData" rev=”1.0”> UserConfigData identifier

XOff <XOff>0</XOff> I16 Offset to be applied to all X-Axis coordinates (bits)

YOff <YOff>0</YOff> I16 Offset to be applied to all Y-Axis coordinates (bits)

XGain <XGain>1.0</XGain> FLT Gain factor to be applied to all X-axis coordinates

YGain <YGain>1.0</YGain> FLT Gain factor to be applied to all Y-axis coordinates

Rotation <Rotation>90.0</Rotation> FLT Rotation transformation to be applied to the X-Y field

UserVar1 <UserVar1>ABC</UserVar1> ANY General purpose user variable

UserVar2 <UserVar2>123</UserVar2> ANY General purpose user variable

UserVar3 <UserVar3>4.56</UserVar3> ANY General purpose user variable

UserVar4 <UserVar4>true</UserVar4> ANY General purpose user variable

UserVar5 <UserVar5>false</UserVar5> ANY General purpose user variable

UserVar6 <UserVar6>”text”</UserVar6> ANY General purpose user variable

</Data> End UserConfigData

Explanation

This data is intended to be used by a marking application as needed.

The offset, gain and rotation variables are independent of and additive to the equivalent lens correction table adjustment factor

defined in the LensConfigData able.

The general purpose user variables can be used to store any information that a marking application wishes to make persistant across

reboots of the controller. It is up to the application to interpret the UserVar data as required.

See Also ILecSession.requestFixedData(), ILecSession.sendFixedData()

Purpose The lens configuration describes the properties of the lens in use with the EC device.

XML Tag XML Example Text Type Use Description

X

Y

XGain Rotation()cos⋅ XGain Rotation()sin–()⋅

YGain Rotation()sin⋅ YGain Rotation()cos⋅

x

y

Xoff

Yoff
+=

Page 76 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Performance Adjustments

Purpose The Performance Adjustments table contains values that are used to adjust job parameters while the job is executing

Definition

XML Tag XML Example Text Type Description

Data <Data type="PerformanceMatrixData" rev=”1.0”> PerformanceMatrixData identifier

LaserPower
<LaserPower>1.0</LaserPower> FLT Scale factor to be applied to the laser power value

specified in the job

LaserPowerComp
<LaserPowerComp>1.0</LaserPowerComp> FLT Secondary scale factor to be applied to the laser power

value specified in the job

PulseWidth
<PulseWidth>1.0</PulseWidth> FLT Scale factor to be applied to the laser pulse width

specified in the job

Period
<Period>1.0</Period> FLT Scale factor to be applied to the laser pulse period

specified in the job

MarkSpeed
<MarkSpeed>1.0</MarkSpeed> FLT Scale factor to be applied to the MarkSpeed specified in

the job

XOffset <XOffset>0</XOffset> I16 Offset to be applied to all X coordinates (bits)

YOffset <YOffset>0</YOffset> I16 Offset to be applied to all Y coordinates (bits)

ZOffset <ZOffset>0</ZOffset> I16 Offset to be applied to all Z coordinates (bits)

</Data> End PerformanceMatrixData

Explanation

This data is intended to be used by a marking application as needed.

These factors are applied to the job parameters at run-time. They are typically used to adjust marking performance without requiring
alterations to the jobs. This is of particular value when jobs are stored locally and adjustments need to be made to compensate for laser

degradation on a particular machine.

See Also ILecSession.requestFixedData(), ILecSession.sendFixedData()

Page 77 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

6.3.4 Send Fixed Data

Data that was retreived via Session.requestFixedData can be modified and sent back to the EC1000 for storage.

Command ILecSession.sendFixedData

Purpose Send fixed data to an EC device session

Usage

ILecSession.sendFixedData(

ByVal pstrData As String, // The data sent to the EC device. The string supplied contains an XML

// representation of the data.

ByVal pstrStorageName As String // File name of the data file. File path is constructed by the API as follows:

// <PermStoragePath>\LEC\Config\<pstrStorageName>.xml
// where <PermStoragePath> is defined in the SysInfoData for the selected

// EC1000 and <pstrStorageName> is the name of the selected fixed data file

// as stored on the EC1000 without the “.xml” extension.

ByVal puiTimeout As Unsigned Long // Duration for attempting call in seconds.

) As Unsigned Long

Explanation

Data retrieved via the Session.requestFixedData() method may be modified and passed back to the controller for local
storage. That data will then be used the next time the module is rebooted. Note that not all data is changeable by the
application since some of it is set at the factory. See the Session Fixed Data Definitions section for details.

An application should wait on event “FixedDataDone” to be assured the the updated data has been processed by the EC1000
and is ready for subsequent actions.

Returns

0 – Success

10 – Network connection not established

12 – Location for data not found on EC device

13 – Cannot access the remote location where the data is written on the EC device

14 – Cannot access the local source location where the data resides

15 – The data type transmitted is unknown

21 - Licensing is not available

22 - Licensing is denying access to the Broadcast feature

See also ILecSession.requestFixedData

Page 78 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

6.3.5 Send Streaming Job Data

The primary inteface for interacting with the controller is the Session.sendStreamData() method. This method
streams data to the controller as fast as the network and buffering systems allow. Buffering is distributed between
the host operating system, the EC1000 operating system, the EC1000 control software, and finally, the marking engine
input FIFO. The method returns as soon as the data is passed to the downstream communications system and has
been transferred to the target EC1000. Once this method returns, subsequent calls can be made to keep the data
“pipeline” full with marking data. This technique ensures continuous marking operation without pauses.

Streaming Job Data Defintion

Job data contains both actionable commands that direct the marking engine to perform specific operations, and
parametric data that affects how the EC1000 hardware behaves. To minimize the number of XML identifier tags to
express a job, the XML definition make use of two types of constructs. All actionable commands use specific XML tag
names to identify the action, followed by a comma separate list of argument values. The Set tag is used with an
identifier for a parameter followed by a comma separated list of values. For example, the following XML text
expresses a simple job that draws a square box.

Job Command Tags

Command ILecSession.sendStreamData

Purpose Send streaming data to an EC device session.

Usage

Session.sendStreamData(

ByVal pstrData as String, // The data sent to the EC device. The string supplied contains an XML

// representation of the data.

ByVal puiTimeout As Unsigned Long // Duration for attempting call in seconds

) As Unsigned Long

Explanation

Marking jobs are specified as sequences of data that represent instructions to the controller to set operational parameters,
activate the laser steering galvos in both marking and non-marking modes, to interact with external devices, and to send
event information back to a listening application. The job data is specified in an XML string, which is defined in the
Streaming Job Data Defintion section.

Job execution by the controller starts as soon as the job data is received by the module and continues for as long as job data is
available. Very large jobs can be partitioned into logical chunks, such as at marking object boundaries, and streamed out to
the device as buffering on the host and target allow. Since the execution of the job and the process of streaming the data of
the job are asynchronous and overlapped, it is possible to maintain continuous job execution with no pauses.

Returns

0 – Success

1 – Access writing the stream data is denied

2 – Could not establish a connection

3 – No connection

15 – Unknown data. Error in data format

21 - Licensing is not available

23 - Invalid command or parameter in the job stream data

See also

XML Text Description

<Data type=”JobData” rev=”1.0”> Job data type declaration

<Set id=”JumpSpeed”>15,30</Set> The parameter “JumpSpeed” is set to 30 bits per each 15µ sec update period

<Set id=”MarkSpeed”>15,10</Set> The parameter “MarkSpeed” is set to 10 bits per each 15µ update period

<JumpAbs>-5000,-5000</JumpAbs> Move laser galvos to the absolute position -5000, -5000 with the laser off

<MarkAbs>-5000,5000</MarkAbs> Move laser galvos to the absolute position -5000, 5000 with the laser on

<MarkAbs>5000,5000</MarkAbs> Move laser galvos to the absolute position 5000, 5000 with the laser on

<MarkAbs>5000,-5000</MarkAbs> Move laser galvos to the absolute position 5000, -5000 with the laser on

<MarkAbs>-5000,-5000</MarkAbs> Move laser galvos to the absolute position -5000, -5000 with the laser on

</Data> End job data

Command Tag Description/Example XML Syntax Parameters Units Min Max

BeginJob Generates a BeginJob application event (see section 6.3.12)

when executed by the marking engine. The <JobDataCntr>
parameter in the StatInfoData broadcast packet is

reinitialized to zero. BeginJob automatically sets the system

BUSY signal.
Example:

<BeginJob></BeginJob>

N/A

EndJob Generates an EndJob application event (see section 6.3.12)
when executed by the marking engine. The system BUSY

signal is automatically cleared.

Example:

<EndJob></EndJob>

N/A

Page 79 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

JumpAbs Move laser galvos to the absolute position with the laser off
Example:

<JumpAbs>-5000,-5000</JumpAbs>

X Coordinate bits -32768 32767

Y Coordinate bits -32768 32767

Z Coordinate (optional)
If Z is absent, then the Z value is assumed

to be zero

bits -32768 32767

MarkAbs Move laser galvos to the absolute position with the laser on

Example:

<MarkAbs>-5000,5000,200</MarkAbs>

X Coordinate bits -32768 32767

Y Coordinate bits -32768 32767

Z Coordinate (optional)

If Z is absent, then the Z value is assumed
to be zero

bits -32768 32767

LaserOn Turn the laser on for the duration provided.

Example:

<LaserOn>1000</LaserOn>

Duration – length of time to turn the laser

on

µsec 1 (232-1)

/50

WriteAnalog Commands the analog output port to a new value. Port 0 is
the Laser Power port (A1), and Port 1 is the auxilliary analog
output port (A2). A write to port 0 will incur the
LaserPowerDelay (see next section)

Example:

<WriteAnalog>1,344</WriteAnalog>

portNumber – analog output port
identifier

N/A 0 1

value – new port value bits 0 4095

WriteDigital Commands the digital output port to a new value. Port 0 is
the reserved SPAREOUT port. Ports 1-4 select the signals
USEROUT1-4 respectively. Port 5 is the MRKINPRG signal.

Example:

<WriteDigital>3,1</WriteDigital>

portNumber – port identifier N/A 0 5

value – 0 (off) and 1 (on) bool 0 1

LaserSignalOn Turns laser on immediately

Example:

<LaserSignalOn></LaserSignalOn>

N/A

LaserSignalOff Turns laser off immediately

Example:

<LaserSignalOff></LaserSignalOff>

N/A

JobMarker Puts the data value into the broadcast status data

<JobMarker> element. Typically used to track job execution

progress.
Example:

<JobMarker>35</JobMarker>

value - application defined marker value N/A 0 65536

ApplicationEvent Application specific command defining an event. Events
are used to notify the application that a certain point in the
execution of the job has been reached. Events are handled
by the application using the Session.OnMessageEvent
method (see section 6.3.12).

Example:

<ApplicationEvent>100,345</ApplicationEvent>

param1 – First application-specific
parameter

N/A 0 65536

param2 – Second application-specific

parameter

N/A 0 232-1

WaitForIO Wait for the digtal port value to be set. Job execution will

pause until the external signal is in the state or changes to
the state as specified. If a timeout occurs, an exception event

is generated and the WaitForIOTimeout message event will

be passed back to the application.
Example:

<WaitForIO>2,1,100000,5000</WaitForIO>

portNumber – port identifier. Port 0

selects the STRTMRK input signal. Ports
1-4 select the USERIN1-USERIN4 signals

N/A 0 4

levelPolarity – 0 LowLevel, 1 HighLevel, 2

RisingEdge, 3 FallingEdge

N/A 0 3

timeout – abort wait if time exceeds the

value. If timeout is zero, then wait
indefinitely.

µsec 1 (232-1)

/50

debounce – debounce the external signal

for this period of time

msec 1 65535

LongDelay Delay all operations for the duration provided

Example:

<LongDelay>10000</LongDelay>

Duration – length of time to sleep µsec 1 (232-1)

/50

MotfEnable Enables or disables Mark-on-the-fly (Motf) tracking. Upon

enabling, the Motf encoder counter is zeroed and then starts
incrementing or decrementing as motion is detected by the

encoder. If in simulate mode (see MotfMode), the counter is

incremented at a 1Mhz rate.

Example:

<MotfEnable>1</MotfEnable>

state - 0 disabled, 1 - enabled N/A 0 1

MotfWaitForCount The Motf counter is cleared, and then the job pauses until

the absolute value of the Motf encoder counter reaches the
specified value. The counter is automatically cleared when

the value is reached. Example:

<MotfWaitForCount>24557</MotfWaitForCount>

count - encoder count cts -231 231-1

Command Tag Description/Example XML Syntax Parameters Units Min Max

Page 80 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Job Parameter Identifiers

The following list of identifiers is valid for use with the Set tag. Multiple values for parameters are expressed in a
comma separated list:.

MotfResetJump When encountered, Motf is disabled, a Jump is performed to

the specified coordinates, the Motf counter is cleared, and

then Motf is re-enabled.
Example:

<MotfResetJump>-23000,400,0,200</MotfResetJump>

X, Y, Z - coordinate bits -32768 32767

JumpDelay usec 0 65535

Draw Specifies the start of a “draw” list. Up to 32 vertices of a
polygon may be specified to be marked in a loop that will
run continuously until any other instruction or an Abort
message is received by the EC1000.

Example:

<Draw>
 <Vertex>1000,1000</Vertex>
 <Vertex>1000,-1000</Vertex>
 <Vertex>-1000,-1000</Vertex>
 <Vertex>-1000,1000</Vertex>
</Draw>

X, Y coordinate bits -32768 32767

WobbleEnable Enables or disables the wobble function. Wobble
parameters should have already been set using the
<Setid=”Wobble”> parameter

Example:

<WobbleEnable>1</WobbleEnable>

state - 0 disabled, 1 - enabled N/A 0 1

Set Example: <Set id=”MarkSpeed”>500</set> Sets a job parameter (see next section)

Param Identifier Description Arguments Units Min Max

JumpDelay Set the delay for moving the laser

Example:

<set id=”JumpDelay”>150</set>

duration – length of time to delay µsec 0

JumpSpeed Set the jump speed of the laser. The parameters are

normally derived from an application speed setting

expressed as bits/msec or some other appropriate ratio.
Example:

<set id=”JumpSpeed”>15,30</set>

stepPeriod – the duration between each

micro-step, i.e. how often the galvo

position command is updated

µsec 15 65535

stepSize – the length traveled for each
micro-step

bits 1 65535

LaserOffDelay Set the delay for turning off the laser when marking

Example:

<set id=”LaserOffDelay”>100</set>

duration – length of time to delay laser

timing

ticks

0 65535

LaserOnDelay Set the delay for turning on the laser when marking

relative to micro-vector generation. A negative value

means that LASERON is asserted before micro-vectoring
begins.

Example:

<set id=”LaserOnDelay”>200</set>

duration – length of time to delay

relative to the start of micro-vectoring.

laser

timing

ticks

-32768 32767

LaserPower Set the level of the digital laser power port

Example:

<set id=”LaserPower”>200</set>

powerValue - value to set the digital

laser power port. If the value is

different from the last LaserPower
command, then the LaserPowerDelay

delay is invoked.

counts 0 255

LaserPowerDelay Delay after changing power setting. A default value can be

set in the LaserConfig fixed data as parameterLsrPwrDly.
Example:

<set id=”LaserPowerDelay”>125</set>

duration - length of time to delay after

setting LaserPower or executing
WriteAnalog for port 0

µsec 0 (232-1)

/50

MarkDelay Set the delay for ending a series of marks
Example:

<set id=”MarkDelay”>150</set>

duration - length of time to delay µsec 0 65535

MarkSpeed Set the marking speed of the laser
Example:

<set id=”MarkSpeed”>15,70</set>

stepPeriod – the duration between each
micro-step

µsec 15 65535

stepSize – the length traveled for each

micro-step

bits 1 65535

PolyDelay Set the delay between two marks.

Example:
<set id=”PolyDelay”>150</set>

duration – length of time to delay µsec 0 65535

Command Tag Description/Example XML Syntax Parameters Units Min Max

Page 81 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

LaserTiming Define the value of a laser timing “tick” unit. All laser
timing values are in units of LaserTiming ticks. Typically,

the laser timing tick is set to 1usec so that other laser timing

parameters can be more easily interpreted.
Example:

<set id=”LaserTiming”>50</set>

value – number of 20ns clock period
increments in a laser timing “tick”

20ns
incre-

ments

5 500

LaserPulse Set the laser ON pulse settings of the laser
Example:

<set id=”LaserPulse”>1,50,100</set>

value – laser modulation signal
identification:

1 for LASERMOD1
2 for LASERMOD2

N/A 1 2

width – when the laser is ON, the

width of the laser modulation pulse

laser

timing

ticks

0 65535

period – when the laser is ON, the
period of the laser modulation pulse

train for both LASERMOD1 and

LASERMOD2.

laser
timing

ticks

0 65535

VariPolyDelayFlag Set if using variable polygon delay values. If variable
polygon delays are used, then the PolyDelay value is

adjusted proportional to the angular change in the next

segment of the poly-vector.
Example:

<set id=”VariPolyDelayFlag”>true</set>

value - variable polygon delay enabled
state:

false (disabled)
true (enabled)

Bool 0 1

VariJumpDelay Below a given jumpLengthLimit, the jump delay is linearly
scaled down from the JumpDelay value to the

minimumDelay as the jump distance approachs zero.

Example:

<set id=”VariJumpDelay”>50,2000</set>

minimumDelay – minimum length of
time for a jump delay

laser
timing

ticks

0 65535

jumpLengthLimit – jump length

threshold below which the variable
jump delay will be applied

bits 1 65535

Wobble Allows varying line width during Mark operations.

Example:

<set id=”Wobble”>250,10</set>

period – period of the wobble

movement

µsec 20 65535

amplitude – amplitude of the circular

wobble movement

bits 1 32767

MotfCalFactor Relates laser positioning bits to motion encoder counts. A
default value for MotfCalFactor can be set in the
ControllerData fixed data structure.

Example:

<set id=”MotfCalFactor”>23.345</set>

value - calibration factor. A negative
number corresponds to a downward

counting encoder tracking forward

motion.

bits/
count

-32768.0 32767.0

MotfMode Defines how Motf position information is derived. If
Encoder is selected, the quadrature encoder inputs are
used. If Simulate is selected, a 1Mhz clock is used to
increment the encoder counter. A default value for
MotfCalFactor can be set in the ControllerData fixed data
structure.

Example:

<set id=”MotfMode”>0</set>

mode - position tracking mode

0 - Use encoder
1 - Simulate endoder

N/A 0 1

MotfDirection MOTF orientation and direction in degrees. A default

value for MotfDirection can be set in the ControllerData
fixed data structure.

Example:

<set id=”MotfDirection”>270</set>

direction - target travel direction

relative to a cartesian coordinate
system:

0 - left to right in the X axis
90 - bottom to top in the Y axis
180 - right to left in the X axis
270 - Top to bottom in the Y axis

deg 0 270

ActiveCorrectionTable Set the active current correction table.

Example:

<set id=”ActiveCorrectionTable”>1</set>

table - correction table selector (1-4)

Only tables 1 and 2 should be selected
during job execution. Tables 3 and 4
are to used only for loading alternate
data for the XY2-100 interface when
tables 1 & 2 are selected, respectively

N/A 1 4

Param Identifier Description Arguments Units Min Max

Page 82 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

LaserModeConfig Set the laser configuration bitmask.

Example:

<set id=”LaserModeConfig”>0x1FF</set>

bitmask - Laser configuration settings, bit definitions below

Default values for the the individual signals can be set by setting

the LaserConfigData elements: LENAHigh, LONHigh,
LMOD1High, LMOD2High, LFPKHigh

LaserFPK Set the LASERFPK signal timing. Default values for these
settings can be set in the LaserConfig fixed data as the

element names: FPSPos and FPSWidth.

Example:

<set id=”LaserFPK”>-100,10</set>

position – the delay from the leading
edge of LASERON to the assertion of

the LASERFPK signal

laser
timing

ticks

-32768 32767

length – duration of assertion of the

LASERFPK signal

laser

timing

ticks

0 65535

JobDataCntr Set the job data counter to the specified value. The job data
counter is incremented as each 32-bit data element of the

job stream is processed by the marking engine. This is

useful for tracking how much data the marking engine has
processed at any given time. The current value of the

counter is reported in the System Status broadcast data as

element name JobDataCntr.
Example:

<set id=”JobDataCntr”>0</set>

value – counter value (only accepts
zero for now)

N/A 0 0

LaserStandby Set the standby settings of the laser. Default values for
these settings can be set in the LaserConfig fixed data as

the element names: TickleWidth1, TickleFreq1,

TickleWidth2, TickleFreq2
Example:

<set id=”LaserStandby”>2,10,100</set>

value – laser modulation signal
identification

1 for LASERMOD1
2 for LASERMOD2

N/A 1 2

width – when the laser is ON, the

width of the laser modulation pulse

laser

timing
ticks

0 65535

period – when the laser is ON, the

period of the laser modulation pulse

train

laser

timing

ticks

0 65535

LaserModDelay Set the modulation delay of the laser.
Example:

<set id=”LaserModDelay”>25</set>

delay – the delay from the leading edge
of LASERON to the output of the first

pulse on the LASERMOD1 signal

laser
timing

ticks

0 65535

EnableLaser Set the laser active state
Example:

<set id=”EnableLaser”>true</set>

active – laser active state

false - disabled
true - enabled

Bool false true

LaserEnableDelay Set the time required to enable the laser prior to marking.
A default value can be set in the LaserConfig fixed data as

parameter LsrEnaDly.

Example:

<set id=”LaserEnableDelay”>4000</set>

delay – the delay from the leading edge
of LASERENABLE to the leading edge

of LASERON

µsec 0 65535

LaserEnableTimeout Set the timeout for LASERENABLE to de-assert. A default

value can be set in the LaserConfig fixed data as parameter
LsrEnaTmo.

Example:

<set id=”LaserEnableTimeout”>4000</set>

delay – the timeout from the trailing

edge of LASERON to when
LASERENABLE is de-asserted

µsec 0 65535

GalvoDACConfig Set the analog command output configuration for the laser

galvo servo controllers using a bitmask.

Example:

<set id=”GalvoDACConfig”>0x6</set>
 // sets the X & Y range to ±10V Z to ±5V

bitmask – Bitmask which defines analog output configuration.

The mask is defined as follows:

Bits 1..0 encode the range of the X & Y DACs
Bits 3..2 encode the range of the Z DAC

The range encoding is as follows:

00 = ±2.5V, 01 = ±5V, 10 = ±10V

Param Identifier Description Arguments Units Min Max

Name Value Definition

LASERON1 polarity 0x0001 0=active high, 1=active low

LASERON2 polarity 0x0002 0=active high, 1=active low

LASERMOD1 polarity 0x0008 0=active high, 1=active low

LASERMOD2 polarity 0x0010 0=active high, 1=active low

LASERFPK polarity 0x0020 0=active high, 1=active low

LASERENABLE polarity 0x0040 0=active high, 1=active low

LSRPWRDOUT polarity 0x0080 0=active high, 1=active low

Laser activate 0x0100 1=activate (enable) laser output signals

Page 83 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

6.3.6 Save Job Data

When a job has been constructed and tested using on-line worktation facilities, it can be sent to the EC1000 for storage
so that it can be run when the controller is placed in “local” mode.

6.3.7 Manage Job Data

A job has been stored on the EC1000 can be renamed or deleted using this command.

LaserPipelineDelay Set the time that all laser signals are time shifted relative to
the issuance of galvo position commands. This delay is

useful for compensating for digital servo controllers that

have an inherent processing delay time from when the
command input is applied to when the mirrors actually

move.

Example:

<set id=”LaserPipelineDelay”>1500</set>

delay – the delay that all laser control
signals are time shifted relative to

micro-vectoring operations.

laser
timing

ticks

0 4095

ServoConfig Set the configuration of the X, Y and Z servo control

interface.
Example:

<set id=”ServoConfig”>0x4</set>
// Enable X & Y galvos, but not Z. All polarities
// active low, no exceptions are to be generated.

bitmask - Hexidecimal bitmask that defines the configuration of

the laser galvo servo interface. See definitions, below

.

Command ILecSession.saveJobData

Purpose Send job data for storage in the EC1000 Flash memory or USB device

Usage

Session.saveJobData(

ByVal uiTargetLoc as Unsigned Long, // Storage location: 1 == Flash on EC1000, 2 == USB Flash device on EC1000

ByVal pstrStorageName as String, // Name to use as the file name

ByVal pstrJobData As String, // XML representation of the job data

ByVal uiAccessType As Unsigned
Long,

// Access type: 0 == Overwrite, 1 == Append (future)

ByVal uiTimeout As Unsigned Long // Duration for attempting call in seconds

) As Unsigned Long

Explanation Job data is compiled and stored on the target EC1000 Flash file system for use in Local Mode

Returns 0 – Success

See also LecSession.manageJobData(), ILecSession.requestJobNameList()

Command ILecSession.manageJobData

Purpose Manages jobs that have been stored on the EC1000

Usage

Session.manageJobData(

ByVal uiTargetLoc as Unsigned Long, // Storage location: 1 == Flash on EC1000, 2 == USB Flash device on EC1000

ByVal pstrCurStorageName as String, // Current file name

ByVal pstrNewStorageName as
String,

// New file name

ByVal uiActionType As Unsigned
Long,

// Action type: 0 == Delete, 1 == Rename

ByVal uiTimeout As Unsigned Long // Duration for attempting call in seconds

) As Unsigned Long

Explanation Jobs already stored on the EC1000 can be renamed or deleted.

Returns 0 – Success

See also ILecSession.saveJobData(), ILecSession.requestJobNameList()

Param Identifier Description Arguments Units Min Max

Name Value Definition

X_SERVO_EN and
Y_SERVO_EN polarity

0x0001 0=active high, 1=active low

Z_SERVO_EN polarity 0x0002 0=active high, 1=active low

Enable X, Y Servos 0x0004 1=enable servos, 0=disable

Enable Z Servo 0x0008 1=enable servos, 0=disable

X_SERVO_RDY and

Y_SERVO_RDY polarity

0x0010 0=active high, 1=active low

Z_SERVO_RDY polarity 0x0020 0=active high, 1=active low

X, Y Not-ready exception

enable

0x0040 1=enable exception event

generation is X or Y servo
becomes not ready

Z Not-ready exception

enable

0x0080 1=enable exception event

generation if Z servo

becomes not ready

Page 84 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

6.3.8 Request Job Name List

Returns a list of jobs that have been stored on the EC1000.

Command ILecSession.requestJobNameList

Purpose Gets a list of job names stored on the EC1000 Flash or USB Flash

Usage

Session.requestJobNameList(

ByVal uiTargetLoc as Unsigned Long, // Storage location: 1 == Flash on EC1000, 2 == USB Flash device on EC1000

ByRef puiJobCount as Unsigned Long, // Number of jobs found on the target device

ByRef pstrNameList as String, // XML list of jobs names

ByVal uiTimeout As Unsigned Long // Duration for attempting call in seconds

) As Unsigned Long

Explanation

Returns a list of jobs stored in the specified storage location on the EC1000

An example of the syntax of the list is as follows (for the EC1000 Flash device):

<LECFlashJobList>
 <LEC jobname="JobData.wlb" />
 <LEC jobname="LocalJob.wlb" />
</LECFlashJobList

If the device is specified to be the USB Flash device, then <LECFlashJobList> would be <LECUSBJobList>

Returns 0 – Success

See also ILecSession.saveJobData(), ILecSession.manageJobData()

Page 85 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

6.3.9 Send Priority Data

Occasionally it may be neccessary to send urgent commands to the controller, such as an abort, that must bypass the
data stream that is full of job data. Session.sendPriorityData provides this mechanism.

Priority Data Definition

Priority messages are sent using the Session.sendPriorityData() method. The messages are expressed in XML format
as described in the following table

Command ILecSession.sendPriorityData

Purpose Send priority data to an EC device session.

Usage

Session.sendPriorityData(

ByVal pstrData as String, // The data sent to the EC device.

// The string supplied contains an XML representation of the data.

ByVal puiTimeout As Unsigned Long // Duration for attempting call in seconds.

)As Unsigned Long

Explanation

An independent and parallel communication channel is provided to the controller to pass “out-of-band” commands. This
channel of communication is used to send urgent commands to the controller, such as an abort message, or pause/resume
messages.

The method returns as soon as the message is sent, not when the operation is actually performed on the target. Some
messages, however, create response events when the action is completed, such as “Abort” and “GetRegister”.

Returns

0 – Success

1 – Access writing the stream data is denied

2 – Could not establish a connection

3 – No connection

15 – Unknown data. Error in data format

21 - Licensing is not available

22 - Licensing is denying access to the Broadcast feature

See also

Message XML Example Syntax Description

Abort <Data type=”ServiceData” rev=”1.0”>

<Msg id=”Abort” reason=”Terminate”/>
</Data>

Abort based on the reason provided. This reason causes alternative action to be

taken on the EC1000 device. Abort messages result in an OnMessage event

(6.3.12 Session On Message Events) being generated when the operation
completes on the EC1000.

Reason:

Restart <Data type=”ServiceData”>

<Msg id=”Restart”/>
</Data>

Performs a hardware reset of the EC1000. The session will be disconnected and

must be re-established before additional communications is possible.

Suspend <Data type=”ServiceData”>

<Msg id=”Suspend”/>
</Data>

Suspends the execution of the job. The job is paused at the next convenient
location where the lasers are off. If a Mark is currently in progress, it is allowed

to complete ncluding poly-vector mark.

Resume <Data type=”ServiceData”>

<Msg id=”Resume”/>
</Data>

Job execution is permitted to continue.

GetRegisters <Data type=”ServiceData”>

<Msg id=”GetRegisters”/>
</Data>

Sends a request to the EC1000 to return the current values of several hardware

registers on the module. Data is returned via a session OnData event (see 6.3.11
Session On Data Events) message.

SetInterlockEnable <Data type=”ServiceData”>

<Msg id=”SetInterlockEnable”
config=”0x14”/>

</Data>

Enables or disables the interlock function of the EC1000 based on the “config” bit
pattern

Bits [3..0] represent the interlock signals INTLOCK[4..1]. A “1” enables the
corresponding interlock signal.

Bit [4] is the master enable bit for the interlock function.

Value Definition

Job Abort the job that is currently running

Terminate Abort the currently running job and terminate

the current session connection

Page 86 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

6.3.10Session On Connect Events

The API can generate events when the API successfully “connects” to an EC1000 via the ILecSession.loginSession()
method, or “disconnects” using the ILecSession.logoutSession() method. These events are accessed via the
ILecSession.OnConnectEvent interface.

6.3.11Session On Data Events

Priority messages that return variable data do so by generating an OnData event. In general, a request for information
is made by sending a Priority Data message, e.g. “GetRegisters”. When the EC1000 processes the message, it sends
the requested data back through the OnData event channel.

Command ILecSession.OnConnectEvent

Purpose Application and exception events returned from the EC device session.

Usage

ILecEvent Session.OnMessageEvent(

ByVal pstrIPAddr As String, // The IP address of the EC1000 that the request was directed to.

ByVal bState As Bool // True if connected, False if disconnected

) As Unsigned Long

Explanation

Command ILecSession.OnDataEvent

Purpose Data requested from the EC1000 is returned via this interface.

Usage

ILecEvent Session.OnDataEvent(

ByVal puiDataID As Unsigned Long, // Identifier of the data being returned. The identifiers are as follows;

// 0 - Reserved
// 1 - Registers Data

// 2... Reserved

ByVal puiErrorCode as Unsigned Long, // Error code returned from the EC1000. No error == 0.

ByVal pstrData as String // The data sent by the EC device.
// The string supplied contains an XML representation of the data.

) As Unsigned Long

Explanation

Data is returned asynchronous from the request.

Register Data is returned as follow:

<Data type="HardwareState" rev="1.0">

 <ServoStatus>0x0</ServoStatus>

 <XDAC>-500</XDAC>

 <YDAC>-500</YDAC>

 <ZDAC>0</ZDAC>

 <A1DAC>16</A1DAC>

 <A2DAC>0</A2DAC>

 <XY2Chan1>-500</XY2Chan1>

 <XY2Chan2>-500</XY2Chan2>

 <XY2Chan3>0</XY2Chan3>

 <XY2Status>0x0</XY2Status>

 <LaserControl>0x10</LaserControl>

 <LaserPower>1</LaserPower>

 <MOTFPosition>0</MOTFPosition>

 <DIO>0x3FF</DIO>

 <DIO.IN>0xF</DIO.IN>

 <DIO.OUT>0x0</DIO.OUT>

 <DIO.Control>0x1</DIO.Control>

 <DIO.Interlock>0xF</DIO.Interlock>

 <XVectCmd>-500</XVectCmd>

 <YVectCmd>-500</YVectCmd>

 <ZVectCmd>0</ZVectCmd>

</Data>

ew

// Bits 6..3 == Z, Y, X Fault. Bits 2..0 == Z, Y, X Ready.

// bits[3..0] == USERIN[4..1]

// bit[5..4] == SPAREIN, STRTMRK

// bits[9..6] == INTERLOCK[4..1]

// bits[13..10] == USEROUT4..1]

// bits[17..14] == SPAREOUT, LEC_ERROR, LEC_BUSY, MRKINPRG

// bits[3..0] == USEROUT[4..1]

// bits[3..0] == USERIN[4..1]

// bits[4..0] == SPAREOUT, LEC_ERROR, LEC_BUSY, MRKINPRG,

// STRTMRK

// bits[3..0] == INTLOCK[4..1]

Page 87 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

6.3.12Session On Message Events

Jobs can use instructions that create “events” that can be sensed by an application. Events are also generated when
exception conditions occur on the EC1000, such as the response to an abort message, servo error detection, etc.

Command ILecSession.OnMessageEvent

Purpose Application and exception events returned from the EC device session.

Usage

ILecEvent Session.OnMessageEvent(

ByVal puiPayloadHigh As Unsigned Long, // Event data in the high order bytes.

ByVal puiPayloadLow As Unsigned Long // Event data in the low order bytes.

) As Unsigned Long

Explanation

Events are used to communicate asynchronous data from the controller back to the application. Events are normally
produced as a result of the controller executing a Begin Job, End Job, or Application Event instruction. Exception
conditions may also create a event. The data that classifies the event are passed back as two 32-bit payloads from the
controller.

puiPayloadHigh is encoded in two 16-bit entities: puiPayloadHigh[15..0] contains the event type, and
puiPayloadHigh[31..16 contains event-type specific data.

The following event types are supported (puiPayloadHigh[15..0]):

If the event type is an Application Event, then puiPayloadHigh[31..16] define the application message type. The
message type falls into two categories: Job messages and Exception messages. Job messages are created using the
<ApplicationEvent> job command. This command takes two arguments, the first of which is a message type code, and
the second of which is an arbirtary 32-bit parameter. When this command is encountered by the marking engine
controller, a MessageEvent is created, and the message type code is passed back in puiPayloadHigh[31..16] and the
parameter in puiPayloadLow[31..0]. The system pre-defines some <ApplicationEvent> message type codes as indicated
in the following table. The Object and Task messages are intended to be used to mark boundaries in the vector list that
correspond to the abstract definitions of an Object (square, circle, polygon) or a Task (complex assembly of Objects).
They are not necessary for processing a job, they exist for convenience only.

The MarkProgress and CycleProgress events, however, are automatically generated by the EC1000 as a job is executed.
The percentage complete values are calculated using information from <JobMarker> instructions that are automatically
inserted into the job stream.

A CmdProcException is further refined by the puiPayloadLow value. These codes are defined in the following table:

Event Type Value

Begin Job 0x0041 (65)

End Job 0x0042 (66)

Application Event 0x5040 (20544)

Message Type Value Description puiPayloadLow

BeginObject 0x0002 (2) Beginning of a marking object Object Identifier

EndObject 0x0003 (3) End of a marking object Object Identifier

BeginTask 0x0004 (4) Beginning of a task object Task Identifier

EndTask 0x0005 (5) End of a task object Task Identifier

MarkProgress 0x0006 (6) Progress for a marking object Percent Complete

CycleProgress 0x0007 (7) Progress for a job Percent Complete

Reserved 0x0008-0x00FF (8-255) Reserved for future CTI use Reserved

User defined 0x0100-0x1FFF (256-8191) User defined User defined

Exception 0x2000-0xAFFF (8192-45055) Exception messages (see below) Exception specific

AbortException 0x2329 (9001) An Abort was processes 0

InterlockException 0x233D (9021) Interlock was tripped Interlock bit mask

CmdProcException 0xA678 (42616) Command processing exception Exception type code

Reserved 0xB000-0xFFFF (45056-65535) Reserved for future CTI use Reserved

Page 88 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

Table 10: Command Processing Exception Codes

6.4 Broadcast and Session API Error Codes

Errors returned by the Broadcast and Session API are defined in Table 11 below

Table 11: API Error Codes

CmdProcException Type
puiPayloadLow

Code
Description

FifoEmptyTimeout 0x232A (9002) Command FIFO empty timeout

EventTimeout 0x232B (9003) Event ISR timeout

BadOpcode 0x232C (9004) Bad opcode

FirmwareBug 0x232D (9005) Internal firmware bug

WriteDigitalBad 0x232E (9006) WriteDigital bad argument

SetLaserPowerBad 0x232F (9007) SetLaserPower bad argument

SetCorrectionTableBad 0x2330 (9008) SetCorrectionTable bad argument

SetLaserPulseBad 0x2331 (9009) SetLaserPulse bad argument

WaitForIOBad 0x2332 (9010) WaitForIO bad argument

WaitForIOTimeout 0x2333 (9011) WaitForIO command timeout

SetLaserStandbyBad 0x2334 (9012) SetLaserStandby bad argument

CPLDTimeout 0x2335 (9013) Communications timeout to the CPLD

LaserActiveTimeout 0x2336 (9014) Timeout waiting for the laser to go active

SetMOTFOrientationBad 0x2337 (9015) SetMotfDirection bad argument

EnableMotfBad 0x2338 (9016) EnableMotf bad argument

SetLaserPulseWidthPctBad 0x2339 (9017) SetLaserPulseWidthPct bad argument

SetLaserPulsePeriodPctBad 0x233A (9018) SetLaserPulsePeriodPct bad argument

SetFieldOrientationBad 0x233B (9019) SetFieldOrientation bad argument

ServoFault 0x233C (9020) Servo fault detected

WriteAnalog 0x233E (9022) WriteAnalog bad argument

OuputDrawList 0x2392 (9106) OuputDrawList bad argument

Error Name Code Description

Success 0 Operation successful

Error_AccessDenied 1 TCP/IP networking access was denied

Error_NotConnected 3 Client is not connected to the server

Error_IllegalClientId 4 Internal error

Error_InvalidPersistState 5 Internal error

Error_ServerNameNotFound 8 Requested server name is not valid

Error_InvalidParameter 9 Bad parameter to a method call

Error_Network 10 TCP/IP networking error

Error_DataNotFound 11 Requested data file not found

Error_PathNotFound 12 Specified path does not exist

Error_Access 13 Access to server file system was denied

Error_LocalAccess 14
Access to the client file system was denied or

Server is under control of a local pendant

Error_DataUnknown 15 XML data type is unknown

Error_EventHandling 16 Internal event processing error

Error_NotAvailable 17 Server is not currently available

Error_Aborting 19 Server is currently aborting

Error_Aborted 20 Server action was aborted

Error_Exception 23 Internal error

Error_Timeout 24 Requested action timed out

Error_NoData 25 The requested fixed data was empty

Error_DataExists 26 Destination file already exists and over-write not specified

Error_RemoteAccess 28 Server is already connected to a client

Error_StateError 29 Server is in an error state and unavailable

Error_BufferFull 31 Streaming data transmit buffer is full

Page 89 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

7 Remote Control Protocol
There are three basic modes of operation for the EC1000:

1. LAN based streaming mode where job data is managed on a host computer and sent to the EC1000 for
immediate execution

2. Local mode where an attached pendant is used to control the selection and execution of jobs stored locally

3. Remote mode where a LAN based supervisory interface can interact with the EC1000 and control all of the local
mode functions

Remote mode is implemented as a text based messaging interface over a normal TCP/IP socket connection. Messages
are sent to the EC1000 as strings terminated with a line-feed character. All messages sent to the EC1000 are
acknowleged with a line-feed terminated string.

All read or Get functions can be executed concurrently with other activities the board may be performing, such as
running jobs over the streaming interface. These functions would typically be associated with administrative
functions such as examining passwords, networking parameters, job lists, etc. If modifications need to be made or if
actual execution control is required via the remote control interface, then a client application must “request control”
or ownership of the module via the protocol command TakeHostControl.

7.1 TCP/IP Interface

Remote control of the EC1000 can be established by any host computer that supports TCP/IP networking. This
includes computers running Microsoft Windows, Linux, or other Unix derivitives. Communication with the board is
established by opening a socket connection using the EC1000 IP address on port number 12500. The IP address can
be learned by using the ILecBroadcast API to access the SysInfo data packets that are broadcast by the EC1000.
Alternatively, if the EC1000 is configured with a static IP address, then broadcast monitoring is not required.

When a connection is established, the EC1000 transmits a “welcome banner”. This string must be read from the socket
before bi-directional communication can be established.

7.2 Protocol Specification

The following table defines the valid remote control commands and responses. Some commands take arguments. In
such cases, the arguments are separated from the command and from each other by a ‘,’ (comma) character. If
commands yield responses that have multiple values, the values are comma separated.

Note that all commands are text strings and are expressed in the table enclosed in quotes (““). The quotation
characters are NOT part of the command. This is also true for responses. Variable information is expressed as
<variable> which is also a string.

Note also that all commands and arguments are case-sensitive.

Abort

Purpose: Stops the execution of a job

Implementation: “Abort”

Parameters

Returns: “ACK” (command acknowledge)

Comments: Immediately stops the execution of a running job and sets the JobRunning status

See also:

CloseCOMPort

Purpose: Closes the serial I/O COM port on the EC1000

Implementation: “CloseCOMPort,<port-ID>”

Parameters <port-ID> (1 == pendant port, 2 == Laser serial port)

Returns: “ACK” (command acknowledge)

Comments: The COM port is closed and no longer available for serial I/O

See also: COMWriteLine, OpenCOMPort

Page 90 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

COMWriteLine

Purpose: Writes the string argument to the COM port on the EC1000.

Implementation: “COMWriteLine,<port-ID>,<string>,<Timeout>”

Parameters <port-ID> (1 == pendant port, 2 == Laser serial port)

<string> (a string to be sent to the COM port)

<Timeout> (time to wait in ms for a new-line terminated response)

Returns: “<response string>” (command acknowledge)

“ERROR_PORT_TIMEOUT” (if return string is not received before Timeout expires)

Comments: This operation is intended to permit out-of-band commincation to serial port based automation devices or laser systems.
The specified port-ID must have been opened with the command OpenCOMPort

See also: CloseCOMPort, OpenCOMPort

ExecuteJobContinuous

Purpose: Starts the execution of a job and repeats it forever

Implementation: “ExecuteJobContinuous,<job-name>”

Parameters <job-name> (must be one of the jobs loaded with LoadFlashJob or LoadUSBJob)

Returns: “ACK” (command acknowledge)

Comments: The host must have taken control of the EC1000 using the TakeHostControl command, and must have previously loaded a
job from local (LoadFlashJob) or USB based (LoadUSBJob) Flash storage prior to issuing this command. Job execution will
begin immediately. If job execution isrequired to be synchronous with an external input such as STRTMRK, then it should
have been constructed with a <WaitForIO> instruction after the <BeginJob> instruction.

At the completion of the job, the job will loop until an Abort command is received.

This command returns as soon as the job is dispatched.

See also: TakeHostControl, GetJobStatus, Abort, LoadFlashJob, LoadUSBJob

ExecuteJobOnce

Purpose: Starts the execution of a job one time

Implementation: “ExecuteJobOnce,<job-name>”

Parameters <job-name> (must be one of the jobs loaded with LoadFlashJob or LoadUSBJob)

Returns: “ACK” (command acknowledge)

Comments: The host must have taken control of the EC1000 using the TakeHostControl command, and must have previously loaded a
job from local (LoadFlashJob) or USB based (LoadUSBJob) Flash storage prior to issuing this command. Job execution will
begin immediately without waiting unless itwas constructed with a <WaitFoIO> instruction. The job can be stoped at any
time by issuing an Abort command.

This command returns as soon as the job is dispatched.

See also: TakeHostControl, GetJobStatus, Abort, LoadFlashJob, LoadUSBJob

GetAdminPIN

Purpose: Gets the current Administrator PIN (password)

Implementation: “GetAdminPIN”

Parameters

Returns: <admin-pin> (Administrator PIN as a numeric string)

Comments: The Admininstrator PIN is used with the Pendant interface to protect access to administrator functions

See also: SetAdminPIN, GetUserPIN, SetUserPIN

GetDHCPMode

Purpose: Gets the current DHCP addressing mode

Implementation: “GetDHCPMode”

Parameters

Returns: “Static” (Static IP addressing is used)

“Autodetect” (Automatic DHCP based addressing is used)

Comments: Static IP addressing is set using the SetLocalIP, SetLocalGateway, SetSubnetMask and SetDHCPMode command. The board
must be reset before these setting take effect. Automatic IP addressing mode causes the EC1000 to request an IP address
from a DHCP server when it boots up. If no server responds within a timeout period, the EC1000 automatically assigns
itself an IP address in the range 169.254.xxx.yyy with a net-mask value of 255.255.0.0.

See also: SetLocalIP, SetLocalGateway, SetSubnetMask, SetDHCPMode

Page 91 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

GetFlashJobFileList

Purpose: Returns a comma separated list of job files located on the Flash file system located on the EC1000

Implementation: “GetFlashJobFileList”

Parameters

Returns: <job-list> (a comma separated list of job names)

Comments: Jobs are loaded into the EC1000 Flash file system through the use of the ILecSession.saveJobData method.

See also: ILecSession.saveJobData

GetHostControlStatus

Purpose: Returns the current EC1000 control status of this remote control session

Implementation: “GetHostControlStatus”

Parameters

Returns: “HOST_IN_CONTROL” (control has been granted to this session)

“HOST_NOT_IN_CONTROL” (this session is not in exclusive control of the EC1000)

Comments:

See also: TakehostControl, ReleaseHostControl

GetHostInControl

Purpose: Returns the current host interface that has exclusive control of the EC1000

Implementation: “GetHostInControl”

Parameters

Returns: “Pendant” (control has been granted to the pendant interface)

“LANStream” (control has been granted to the streaming LAN interface)

“LAN” (control has been granted to the LAN remote control interface)

Comments:

See also: TakehostControl, ReleaseHostControl

GetJobStatus

Purpose: Returns the status of the currently executing job

Implementation: “GetJobStatus”

Parameters

Returns: “Idle” (no job is executing; a job may or may not be loaded)

“Busy” (a job is executing)

Comments:

See also:

GetLocalGateway

Purpose: Returns the gateway IP address used by the EC1000 if in static IP addressing mode

Implementation: “GetLocalGateway”

Parameters

Returns: <gateway-address> (in dot notation, e.g. 192.168.101.2)

Comments:

See also: SetLocalGateway

GetLocalIP

Purpose: Returns the IP address used by the EC1000 if in static IP addressing mode

Implementation: “GetLocalIP”

Parameters

Returns: <static-IP-address> (in dot notation, e.g. 192.168.101.2)

Comments:

See also: SetLocalIP

Page 92 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

GetNodeFriendlyName

Purpose: Returns the “friendly name” of the EC1000

Implementation: “GetNodeFriendlyName”

Parameters

Returns: <friendly-name> (string representing the friendly name assigned to the EC1000)

Comments: This corresponds to the tag <FriendlyName> in the AdminConfig file

See also: SetNodeFriendlyName

GetRemoteIP

Purpose: Returns the IP address of the LAN stream host that has control of the EC1000

Implementation: “GetRemoteIP”

Parameters

Returns: <remote-IP-address> (in dot notation, e.g. 192.168.101.2)

Comments: If no host has control, the address “0.0.0.0” is returned

See also:

GetSubnetMask

Purpose: Returns the subnet mask used by the EC1000 if in static IP addressing mode

Implementation: “GetSubnetMask”

Parameters

Returns: <subnet-mask> (in dot notation, e.g. 255.255.255.0)

Comments:

See also: SetSubnetMask

GetUSBJobFileList

Purpose: Returns a comma separated list of job files located on the USB Flash file system attached to the EC1000

Implementation: “GetUSBJobFileList”

Parameters

Returns: <job-list> (a comma separated list of job names)

Comments: Jobs are loaded onto a USB Flash file system through the use of the ILecSession.saveJobData method.

See also: ILecSession.saveJobData

GetUserPIN

Purpose: Gets the current User PIN (password)

Implementation: “GetUserPIN”

Parameters

Returns: <user-pin> (User PIN as a numeric string)

Comments: The User PIN is used with the Pendant interface to protect unauthorized access to EC1000 functions

See also: SetUserPIN, GetAdminPIN, SetAdminPIN

Page 93 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

HardwareReset

Purpose: Forces a hard reset of the EC1000

Implementation: “HardwareReset”

Parameters

Returns: “ACK” (command acknowledge)

Comments: The host must have exclusive control of the EC1000 (TakeHostControl) before issuing this command.

The board will reboot as if power were just applied. Any IP addressing changes will be applied.

See also:

LoadFlashJob

Purpose: Loads a job from the EC1000 resident Flash file system

Implementation: “LoadFlashJob,<job-name>”

Parameters <job-name> (the name of a job stored on the EC1000)

Returns: “ACK” (command acknowledge)

Comments: The host must have exclusive control of the EC1000 (TakeHostControl) before issuing this command.

The job name must include the extension as part of the name, e.g. “Circle.wlb”

See also: GetFlashJobList

LoadHardwareDefaults

Purpose: Sets the current operating parameters of the EC1000 to their default values

Implementation: “LoadHardwareDefaults”

Parameters

Returns: “ACK” (command acknowledge)

Comments: The host must have exclusive control of the EC1000 (TakeHostControl) before issuing this command.

See also:

LoadUSBJob

Purpose: Loads a job from the USB Flash file system attached to the EC1000

Implementation: “LoadUSBJob,<job-name>”

Parameters <job-name> (the name of a job stored on the USB Flash file system device)

Returns: “ACK” (command acknowledge)

Comments: The host must have exclusive control of the EC1000 (TakeHostControl) before issuing this command.

The job name must include the extension as part of the name, e.g. “Circle.wlb”

See also: GetUSJobList

OpenCOMPort

Purpose: Opens the specified serial I/O COM port on the EC1000

Implementation: “OpenCOMPort,<port-ID>,<baud-rate>,<data-bits>,<parity>,<stop-bits>,<flow-control>”

Parameters <port-ID> (1 == pendant port, 2 == Laser serial port

<baud-rate> (one of {110,300,1200,2400,4800,9600,19200,38400,57600,115200,128000,256000})

<data-bits> (one of {5,6,7,8})

<parity> (one of {Even,Odd,None,Mark,Space})

<stop-bits> (one of {1,1.5,2})

<flow-control> (one of {None,XonXoff,CTS_RTS,DSR_DTR})

Returns: “ACK” (command acknowledge)

Comments: The specified COM port is opened and is available for serial I/O.

This operation is intended to permit out-of-band commincation to serial port based automation devices or laser systems.

A normal configuration might be specified as: OpenCOMPort,2,38400,8,None,1,None

Only COM port-ID 1 has hardware flow control support.

See also: COMWriteLine, CloseCOMPort

Page 94 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

ReleaseHostControl

Purpose: Releases exclusive control of the EC1000 to the LANStream host interface

Implementation: “ReleaseHostControl”

Parameters

Returns: “ACK” (command acknowledge)

Comments: The host must have exclusive control of the EC1000 (TakeHostControl) before issuing this command.

Control is returned to the LANStream interface such that jobs may again be streamed to the EC1000 via that interface.

See also: TakeHostControl

SetAdminPIN

Purpose: Sets the Administrator PIN (password)

Implementation: “SetAdminPIN,<admin-pin>”

Parameters <admin-pin> (new administrator PIN as a numeric string)

Returns: “ACK” (command acknowledge)

Comments: The host must have exclusive control of the EC1000 (TakeHostControl) before issuing this command.

The Admininstrator PIN is used with the Pendant interface to protect access to administrator functions

See also: SetAdminPIN, GetUserPIN, SetUserPIN

SetDHCPMode

Purpose: Sets the DHCP addressing mode

Implementation: “SetDHCPMode,<mode>”

Parameters <mode> (“Static” or “Autodetect”)

Returns: “ACK” (command acknowledge)

Comments: The host must have exclusive control of the EC1000 (TakeHostControl) before issuing this command.

Static IP addressing parameters are set using the SetLocalIP, SetLocalGateway, and SetSubnetMask commands. The board
must be reset before these setting take effect. Automatic IP addressing mode causes the EC1000 to request an IP address
from a DHCP server when it boots up. If no server responds within a timeout period, the EC1000 automatically assigns
itself an IP address in the range 169.254.xxx.yyy with a net-mask value of 255.255.0.0.

See also: SetLocalIP, SetLocalGateway, SetSubnetMask

SetLocalGateway

Purpose: Sets the gateway IP address used by the EC1000 if in static IP addressing mode

Implementation: “SetLocalGateway,<gateway-address>”

Parameters <gateway-address> (in dot notation, e.g. 192.168.101.2)

Returns: “ACK” (command acknowledge)

Comments: The host must have exclusive control of the EC1000 (TakeHostControl) before issuing this command.

Other static IP addressing parameters are set using the SetLocalIP and SetSubnetMask commands. The board must be reset
before these setting take effect.

See also: GetLocalGateway, SetLocalIP, SetSubnetMask, SetDHCPMode

SetLocalIP

Purpose: Sets the IP address used by the EC1000 if in static IP addressing mode

Implementation: “SetLocalIP,<IP-address>”

Parameters <IP-address> (in dot notation, e.g. 192.168.101.200)

Returns: “ACK” (command acknowledge)

Comments: The host must have exclusive control of the EC1000 (TakeHostControl) before issuing this command.

Other static IP addressing parameters are set using the SetLocalGateway and SetSubnetMask commands. The board must be
reset before these setting take effect.

See also: GetLocalIP, SetLocalGateway, SetSubnetMask, SetDHCPMode

Page 95 Rev. 1.5.1 8 Feb 2008 EC1000 OEM Integrators Manual

SetNodeFriendlyName

Purpose: Sets the “friendly name” of the EC1000

Implementation: “SetNodeFriendlyName,<friendly-name>”

Parameters <friendly-name> (string representing the friendly name assigned to the EC1000)

Returns: “ACK” (command acknowledge)

Comments: The host must have exclusive control of the EC1000 (TakeHostControl) before issuing this command.

This corresponds to the tag FriendlyName in the AdminConfig file

See also: GetNodeFriendlyName

SetSubnetMask

Purpose: Sets the subnet mask used by the EC1000 if in static IP addressing mode

Implementation: “SetSubnetMask,<mask>”

Parameters <mask> (in dot notation, e.g. 255.255.255.0)

Returns: “ACK” (command acknowledge)

Comments: The host must have exclusive control of the EC1000 (TakeHostControl) before issuing this command.

Other static IP addressing parameters are set using the SetLocalGateway and SetLocalIP commands. The board must be reset
before these setting take effect.

See also: GetSubnetMask, SetLocalGateway, SetLocalIP, SetDHCPMode

• SetUserPIN

Purpose: Sets the Administrator PIN (password)

Implementation: “SetUserPIN,<user-pin>”

Parameters <user-pin> (new user PIN as a numeric string)

Returns: “ACK” (command acknowledge)

Comments: The host must have exclusive control of the EC1000 (TakeHostControl) before issuing this command.

The User PIN is used with the Pendant interface to protect access to EC1000 functions

See also: SetUserPIN, GetAdminPIN, SetAdminPIN

TakeHostControl

Purpose: Requests exclusive control of the EC1000

Implementation: “TakeHostControl”

Parameters

Returns: “ACK” (command acknowledge)

Comments: Exclusive control will not be granted if the EC1000 is currently executing a job. Use the GetJobStatus command to
determine if the EC1000 is in a proper state before issuing this command.

See also: ReleaseHostControl, GetJobStatus

Page 96 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

7.3 Remote Control Error Codes

In certain cases, the response messages may be an error message rather than the expected ACK or return variable(s). The
following table defines the possible error strings that may be returned.

Error String Description

ERROR_ARGS The command passed inappropriately formed arguments, or no argument if an argument was required

ERROR_COMMAND The command was not recognized

ERROR_SOFTWARE An internal software exception occured

ERROR_NOT_IN_HOST_CONTROL The command required that exclusive control of the EC1000 be obtained (TakeHostContro)

ERROR_NO_FILES_FOUND The named job file was not found

ERROR_NO_DRIVE No USB disk drive was found

ERROR_JOB_BUSY Command cannot execute a job is running

ERROR_CANNOT_OPEN_PORT Cannot open the serial port

ERROR_PORT_NOT_OPEN Serial port was not opened before the requested command

ERROR_PORT_TIMEOUT The serial port timed-out waiting for input

ERROR_WRONG_HOST_TYPE Serial port I/O is only allowed while the streaming LAN interface is in control

ERROR_PORT_NUMBER An invalid COM port ID was specified

ERROR_CANNOT_CREATE_PORT An error occured while trying to open a COM port for serial communications

Appendix A EC000-IO Schematic

Page 98 Rev. 1.5.1 8 Feb 2008EC1000 OEM Integrators Manual

	1 Introduction
	1.1 General Notes
	1.2 Using this manual
	1.2.1 Purpose
	1.2.2 Scope
	1.2.3 Revision History

	1.3 Obtaining Technical Assistance

	2 Safety
	2.1 Safety labels and symbols
	2.2 General safety guidelines
	2.3 SAFETY/CAUTIONS

	3 EC1000 Product Introduction
	3.1 EC1000 System Description
	3.2 EC1000 Features
	3.2.1 Hardware features
	3.2.2 Software features

	3.3 Technical Specifications

	4 Installation Requirements/Precautions
	4.1 Storage and Installation Environment
	4.2 Jumper Setting for Non-standard Galvo Systems
	4.3 EC1000 Board
	4.4 EC1000 I/O Module
	4.4.1 I/O Module Block Diagram
	4.4.2 I/O Module Connectors, Rev C-E
	4.4.3 I/O Module Connectors, Rev F

	4.5 EC1000 Typical Embedded Installation
	4.6 EC1000 I/O Module Connectivity Summary Reference
	4.7 EC1000 I/O Module User Connector Part Number Reference
	4.8 EC1000 to I/O Module Connector Part Number Reference
	4.9 EC1000 Servo Controller Connector Part Number Reference
	4.10 EC1000 Signal Conditioning
	4.11 EC1000 and EC1000 I/O Module Connectors
	4.11.1 Ethernet/USB Connectors
	4.11.2 USER I/O A Connector
	4.11.3 USER I/O B Connector
	4.11.4 Low Speed Serial Connectors
	4.11.5 Laser Analog Connector
	4.11.6 XYZ Analog Signal Descriptions
	4.11.7 X & Y-Axis Connectors
	4.11.8 Z-Axis Connectors
	4.11.9 Power Connectors

	4.12 XY2-100 Protocol Interface
	4.12.1 XY2-100 Interface Timing

	4.13 Stand-alone Operation

	5 Principle Of Operation
	5.1 Hardware Overview
	5.2 Software Overview
	5.3 Scanning Job Fundamentals
	5.3.1 Coordinate system conventions
	5.3.2 Marks and Jumps
	Basic Action Commands

	5.3.3 Micro-vectoring
	5.3.4 Delays

	5.4 Image Field Correction
	5.4.1 X-Y Mirror Induced Distortion
	5.4.2 F-theta Objective Induced Distortion
	5.4.3 Composite Distortion and Correction Methodology

	5.5 Laser Timing Control
	5.5.1 Software Control of Laser Timing
	5.5.2 Laser Timing Emulation
	CO2 Laser Timing
	Nd:YAG Emulation Mode-1 Timing
	Nd:YAG Emulation Mode-2 Timing
	Nd:YAG Emulation Mode-3 Timing
	Nd:YAG Emulation Mode-4 Timing
	Nd:YAG Emulation Mode-5 Timing
	Fiber Laser Timing

	6 Application Programming Interface
	6.1 API Implementation and Installation
	6.2 Broadcast API
	6.2.1 Attach Broadcast
	6.2.2 Detach Broadcast
	6.2.3 Get Lec Server Count
	6.2.4 Get Lec Server List
	6.2.5 Get Broadcast Data
	Broadcast Data Definitions
	System Information
	Status Information

	6.3 Session API
	6.3.1 Session Login
	6.3.2 Session Logout
	6.3.3 Session Request Fixed Data
	Session Fixed Data Definitions
	Administration Configuration
	Controller Configuration
	Laser Configuration
	Lens Configuration
	Correction Tables
	User Configuration
	Performance Adjustments

	6.3.4 Send Fixed Data
	6.3.5 Send Streaming Job Data
	Streaming Job Data Defintion
	Job Command Tags
	Job Parameter Identifiers

	6.3.6 Save Job Data
	6.3.7 Manage Job Data
	6.3.8 Request Job Name List
	6.3.9 Send Priority Data
	Priority Data Definition

	6.3.10 Session On Connect Events
	6.3.11 Session On Data Events
	6.3.12 Session On Message Events

	6.4 Broadcast and Session API Error Codes

	7 Remote Control Protocol
	7.1 TCP/IP Interface
	7.2 Protocol Specification
	Abort
	CloseCOMPort
	COMWriteLine
	ExecuteJobContinuous
	ExecuteJobOnce
	GetAdminPIN
	GetDHCPMode
	GetFlashJobFileList
	GetHostControlStatus
	GetHostInControl
	GetJobStatus
	GetLocalGateway
	GetLocalIP
	GetNodeFriendlyName
	GetRemoteIP
	GetSubnetMask
	GetUSBJobFileList
	GetUserPIN
	HardwareReset
	LoadFlashJob
	LoadHardwareDefaults
	LoadUSBJob
	OpenCOMPort
	ReleaseHostControl
	SetAdminPIN
	SetDHCPMode
	SetLocalGateway
	SetLocalIP
	SetNodeFriendlyName
	SetSubnetMask
	TakeHostControl

	7.3 Remote Control Error Codes

	Appendix A EC000-IO Schematic

